K. N. Kreuzer, DNA damage responses in prokaryotes: regulating gene expression, modulating growth patterns, and manipulating replication forks, Cold Spring Harb. Perspect. Biol, vol.5, p.12674, 2013.

J. A. Imlay, Transcription factors that defend bacteria against reactive oxygen species, Annu. Rev. Microbiol, vol.69, pp.93-108, 2015.

Z. Baharoglu and D. Mazel, SOS, the formidable strategy of bacteria against aggressions, FEMS Microbiol. Rev, vol.38, pp.1126-1145, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01423593

K. W. Bayles, Bacterial programmed cell death: making sense of a paradox, Nat. Rev. Microbiol, vol.12, pp.63-69, 2014.

D. Slade and M. Radman, Oxidative stress resistance in Deinococcus radiodurans. Microbiol, Mol. Biol. Rev, vol.75, pp.133-191, 2011.

M. J. Daly, Death by protein damage in irradiated cells, DNA Repair Amst, vol.11, pp.12-21, 2012.

S. Lim, J. Jung, L. Blanchard, and A. De-groot, Conservation and diversity of radiation and oxidative stress resistance mechanisms in Deinococcus species, FEMS Microbiol. Rev, vol.43, pp.19-52, 2019.
URL : https://hal.archives-ouvertes.fr/cea-01950873

M. Tanaka, A. M. Earl, H. A. Howell, M. J. Park, J. A. Eisen et al., Analysis of Deinococcus radiodurans's transcriptional response to ionizing radiation and desiccation reveals novel proteins that contribute to extreme radioresistance, Genetics, vol.168, pp.21-33, 2004.

K. S. Makarova, M. V. Omelchenko, E. K. Gaidamakova, V. Y. Matrosova, A. Vasilenko et al., Deinococcus geothermalis: the pool of extreme radiation resistance genes shrinks, PLoS One, vol.2, p.955, 2007.

A. De-groot, D. Roche, B. Fernandez, M. Ludanyi, S. Cruveiller et al., RNA sequencing and proteogenomics reveal the importance of leaderless mRNAs in the radiation-tolerant bacterium Deinococcus deserti, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02014046

, Genome Biol. Evol, vol.6, pp.932-948

L. Blanchard, P. Guerin, D. Roche, S. Cruveiller, D. Pignol et al., Conservation and diversity of the IrrE/DdrO-controlled radiation response in radiation-resistant Deinococcus bacteria, p.477, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01713005

M. Ludanyi, L. Blanchard, R. Dulermo, G. Brandelet, L. Bellanger et al., Radiation response in Deinococcus deserti: IrrE is a metalloprotease that cleaves repressor protein DdrO, Mol. Microbiol, vol.94, pp.434-449, 2014.

A. Devigne, S. Ithurbide, C. Bouthier-de-la-tour, F. Passot, M. Mathieu et al., DdrO is an essential protein that regulates the radiation desiccation response and the apoptotic-like cell death in the radioresistant Deinococcus radiodurans bacterium, Mol. Microbiol, vol.96, pp.1069-1084, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01464823

Y. Wang, Q. Xu, H. Lu, L. Lin, L. Wang et al., Protease activity of PprI facilitates DNA damage response: Mn(2+)-dependence and substrate sequence-specificity of the proteolytic reaction, PLoS One, vol.10, p.122071, 2015.

A. M. Earl, M. M. Mohundro, I. S. Mian, and J. R. Battista, The IrrE protein of Deinococcus radiodurans R1 is a novel regulator of recA expression, J. Bacteriol, vol.184, pp.6216-6224, 2002.

Y. Hua, I. Narumi, G. Gao, B. Tian, K. Satoh et al., PprI: a general switch responsible for extreme radioresistance of Deinococcus radiodurans, Biochem. Biophys. Res. Commun, vol.306, pp.354-360, 2003.

A. Vujicic-zagar, R. Dulermo, M. Le-gorrec, F. Vannier, P. Servant et al., Crystal structure of the IrrE protein, a central regulator of DNA damage repair in Deinococcaceae, J. Mol. Biol, vol.386, pp.704-716, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00532606

K. S. Makarova, Y. I. Wolf, and E. V. Koonin, Comprehensive comparative-genomic analysis of type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes, Biol. Direct, vol.4, p.19, 2009.

B. Bose, J. M. Auchtung, C. A. Lee, and A. D. Grossman, A conserved anti-repressor controls horizontal gene transfer by proteolysis, Mol. Microbiol, vol.70, pp.570-582, 2008.

R. Meima and M. E. Lidstrom, Characterization of the minimal replicon of a cryptic Deinococcus radiodurans SARK Downloaded from, 2000.

, Nucleic Acids Research, vol.47, issue.21, p.11417, 2019.

, plasmid and development of versatile Escherichia coli-D. radiodurans shuttle vectors, Appl Environ. Microbiol, vol.66, pp.3856-3867

A. Battesti and E. Bouveret, The bacterial two-hybrid system based on adenylate cyclase reconstitution in Escherichia coli, Methods, vol.58, pp.325-334, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01458246

E. Mossessova and C. D. Lima, Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast, Mol. Cell, vol.5, pp.865-876, 2000.

B. Raynal, P. Lenormand, B. Baron, S. Hoos, and P. England, Quality assessment and optimization of purified protein samples: why and how? Microb, Cell Factor, vol.13, p.180, 2014.

S. Doublié, Preparation of selenomethionyl proteins for phase determination, Methods Enzymol, vol.276, pp.523-530, 1997.

H. Walden, Selenium incorporation using recombinant techniques, Acta Crystallogr. D Biol. Crystallogr, vol.66, pp.352-357, 2010.

M. D. Winn, C. C. Ballard, K. D. Cowtan, E. J. Dodson, P. Emsley et al., Overview of the CCP4 suite and current developments, 2011.

, Acta Crystallogr. D Biol. Crystallogr, vol.67, pp.235-242

P. D. Adams, P. V. Afonine, G. Bunkóczi, V. B. Chen, I. W. Davis et al., PHENIX: a comprehensive Python-based system for macromolecular structure solution, Acta Crystallogr. D Biol. Crystallogr, vol.66, pp.213-221, 2010.

C. J. Williams, J. J. Headd, N. W. Moriarty, M. G. Prisant, L. L. Videau et al., MolProbity: More and better reference data for improved all-atom structure validation, Protein Sci. Publ. Protein Soc, vol.27, pp.293-315, 2018.

G. Weng, E. Wang, Z. Wang, H. Liu, F. Zhu et al., HawkDock: a web server to predict and analyze the protein-protein complex based on computational docking and MM/GBSA, Nucleic Acids Res, vol.47, pp.322-330, 2019.

G. C. Van-zundert, J. P. Rodrigues, M. Trellet, C. Schmitz, P. L. Kastritis et al., The HADDOCK2.2 web server: user-friendly integrative modeling of biomolecular complexes, J. Mol. Biol, vol.428, pp.720-725, 2016.

L. A. Kelley, S. Mezulis, C. M. Yates, M. N. Wass, and M. J. Sternberg, The Phyre2 web portal for protein modeling, prediction and analysis, Nat. Protoc, vol.10, pp.845-858, 2015.

R. J. Lewis, J. A. Brannigan, W. A. Offen, I. Smith, and A. J. Wilkinson, An evolutionary link between sporulation and prophage induction in the structure of a repressor:anti-repressor complex, J. Mol. Biol, vol.283, pp.907-912, 1998.

V. L. Colledge, M. J. Fogg, V. M. Levdikov, A. Leech, E. J. Dodson et al., Structure and organisation of SinR, the master regulator of biofilm formation in Bacillus subtilis, J. Mol. Biol, vol.411, pp.597-613, 2011.

J. A. Newman, C. Rodrigues, and R. J. Lewis, Molecular basis of the activity of SinR protein, the master regulator of biofilm formation in Bacillus subtilis, J. Biol. Chem, vol.288, pp.10766-10778, 2013.

A. Vangone and A. M. Bonvin, Contacts-based prediction of binding affinity in protein-protein complexes. eLife, 4, p.7454, 2015.

R. G. Brennan and B. W. Matthews, Structural basis of DNA-protein recognition, Trends Biochem. Sci, vol.14, pp.286-290, 1989.

J. L. Huffman and R. G. Brennan, Prokaryotic transcription regulators: more than just the helix-turn-helix motif, Curr. Opin. Struct. Biol, vol.12, pp.98-106, 2002.

K. K. Rasmussen, K. E. Frandsen, E. Boeri-erba, M. Pedersen, A. K. Varming et al., Structural and dynamics studies of a truncated variant of CI repressor from bacteriophage TP901-1, Sci. Rep, vol.6, p.29574, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01426913

M. Kim, H. J. Kim, S. H. Son, H. J. Yoon, Y. Lim et al., Noncanonical DNA-binding mode of repressor and its disassembly by antirepressor, Proc. Natl. Acad. Sci. U.S.A, vol.113, pp.2480-2488, 2016.

S. Koberg, M. D. Mohamed, K. Faulhaber, H. Neve, and K. J. Heller, Identification and characterization of cis-and trans-acting elements involved in prophage induction in Streptococcus thermophilus J34, Mol. Microbiol, vol.98, pp.535-552, 2015.

C. V. Jongeneel, J. Bouvier, and A. Bairoch, A unique signature identifies a family of zinc-dependent metallopeptidases, FEBS Lett, vol.242, pp.211-214, 1989.

H. Lu, L. Wang, S. Li, C. Pan, K. Cheng et al., Structure and DNA damage-dependent derepression mechanism for the XRE family member DG-DdrO, Nucleic Acids Res, vol.47, pp.9925-9933, 2019.