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Abstract—Indoor occupancy estimation is a critical analytical
task for several applications (e.g., social isolation of elderlies).
The proliferation of Internet of Things (IoT) devices enabled the
occupancy estimation, as it provided access to a mass amount
of data. Several works have been proposed exploiting the IoT
Passive Inference (PIR) or environmental (e.g., C'O2) features.
These works however are traditionally selecting the feature space
at the learning phase and passively using it over time. Hence, they
ignore the dynamics of indoor occupancy, such as the location of
the occupant or his motion patterns, leading to a decreasing accu-
racy over time. In this paper, we study those dynamics and show
that motion patterns, along with environmental features favor the
occupancy estimation. We design a Location-Aware Hidden
Markov Model (HMM), which dynamically adapts the feature
space based on the occupant’s location. Qur experiments on real
data show that Location-Aware HMM can reach up to 10%
better accuracy than Conventional HMM.

Index Terms—OQOccupancy Estimation, Location-Aware Hidden
Markov Model, Internet of Things (IoT)

I. INTRODUCTION

During the last decades, a considerable change in the
age distribution of societies has been observed. The life
expectancy, in conjunction with the low birth rate, is leading
to a world of a higher number of older adults than children.
This transformation of the population puts a heavy burden on
health and social care systems, as the costs of caring for an
elderly are increasing. Thus, the prolongation and support of
independent living at home becomes a crucial task.

The rise of Internet of Things (IoT) gave a great boost
in the field of assisted living with home automation. Several
works attempted to equip houses with smart devices, in order
to detect daily life activities [15, 19], such as visiting. Visiting
can prevent social isolation and loneliness, which are major
concerns for the physical and mental health of an elderly.
Moreover, it can improve the scheduling of nurses and carers,
to avoid collisions with other socializing activities.

Detecting visitors has been achieved through occupancy
estimation. Several works have been proposed and can be
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Fig. 1: C'O2 Distribution for Various Occupants

categorized based on the features they exploit; Passive Infer-
ence (PIR) and environmental. Those two categories are not
exhaustive, but are the major, when dealing with non-intrusive
sensors. Each of the two categories exhibit limitations.

For the first category, several works have been proposed [3,
11] that utilize PIR sensors to estimate occupancy. Although
these works track the indoor motion of occupants, they lack
the ability to model their motion patterns. In this paper, we
make two interesting observations that favor the occupancy es-
timation and successfully model two different motion patterns.
First, we show that visitors tend to stay longer in communal
than private areas of a house and second we notice that
visitors tend to wander less around the rooms than permanent
residents. To the best of our knowledge, this is the first work
to attempt such a modeling.

For the second category, several works [2, 8, 10, 16] are
focusing on environmental features, such as C' O human emis-
sion, sound level or temperature. However, these works ignore
the fact that those features can be easily affected by factors
other than humans, leading to several false negatives. Figure
1 highlights such a challenge. It shows three distributions of
COs concentration over two working days. Each distribution
corresponds to the presence of zero, one and two occupants
respectively. We notice that the distribution of two occupants is
relatively close to the distribution of zero occupants, leading
to a false negative in the detection of two occupants. This
behavior arises by the fact that the apartment is occupied
mainly at sleeping hours. Since the C'Os sensor is located



at the living room, while the residents are sleeping in the
bedroom, its value drops to the same level of having no
occupancy. This problem could be easily avoided, either by
providing C'O; sensor in the bedroom, which is expensive, or
by dynamically adapting the feature space based on occupants
location. In this paper, we design and implement a location
aware algorithm, based on Hidden Markov Model (HMM).
Our algorithm, namely Location-Aware HMM, is able to
dynamically select the feature space, based on the location of
the occupants.

In a nutshell this paper makes the following contributions:

1) We suggest a methodology that is based on a combina-
tion of filter and wrapper selection methods in order to
explore the discriminating ability of IoT environmental
and motion features.

2) We model two different motion patterns of occupants,
by suggesting two new relevant features. We show that
these features favor the occupancy estimation.

3) We propose a Location-Aware HMM algorithm,
which is able to dynamically select the feature space
based on occupant’s location.

4) We run comprehensive experiments over a real dataset
of two different time periods; every day life and vaca-
tions. We show that the proposed Location—-Aware
HMM achieves up to 10% better accuracy than
Conventional HMM.

This paper is organized as follows. Section II discusses
the related work. Section III presents the algorithmic solution
for dynamically selecting the feature space. Our experimental
study is given in Section IV. Section V concludes this paper.

II. RELATED WORK

The development of ubiquitous networks and IoT technolo-
gies enabled the rise of several works on occupancy estimation.
Some papers have been proposed for estimating the exact
number of occupants, by applying a direct sensing and tracking
of people via cameras [5], wearables [2, 9] or RFID based
systems [14]. These works however appear to be intrusive,
expensive and demanding, as they require a close and active
collaboration with the participants. Those three factors make
a real-life deployment unrealistic.

Another research track attempted to overcome the aforemen-
tioned limitations, by focusing on non-intrusive IoT sensors.
Several works [2, 8, 10, 16] have been proposed that explore
only non-intrusive, envrironmental features, such as CO-, C'O,
PM?2.5, temperature, sond, etc. Those works end up with a
common conclusion that raw environmental features exhibit
a high correlation with the occupants number and a good
predictive ability. The authors in [4, 6] take a step further
and discuss how the environmental features are changing
over time. They propose a new set of features, such as
first and second order difference, in order to capture their
time dynamics. Although these works make a first step on
understanding the temporal dependency in occupancy data,
they are highly impacted by the number and the position of
the sensors. By ignoring the position of the sensor with respect

to the occupant’s location, they produce noisy information for
their models and a degraded accuracy.

Beyond the environmental features, some research [3, 11]
has been done in estimating occupancy using Passive Inference
(PIR) sensors. These works explore the relative position of an
occupant and highlight the need to introduce that knowledge
in their feature space. The authors in [3] propose a set of
features, such as the number of sensor firings and the number
of transitions between rooms, which attempt to capture the
occupant’s indoor motion patterns. Although this work is able
to detect the presence or absence of visitors, it is ignorant of
their number. Moreover, it suffers from the common problem
of static feature space; it can not dynamically adapt the feature
space to the occupied room and thus it lacks the ability of
capturing the location dynamics over time.

Last but not least, some research exists oriented in studying
the accuracy of different models in occupancy estimation. The
work in [4, 6] states that HMM is a suitable model for estimating
occupancy, as it outperforms the state-of-the-art methods of
Neural Network (NN) and Support Vector Machine (SVM).

III. OcCcUPANCY ESTIMATION ALGORITHM

HMM is an ubiquitous tool for modelling sequential time
series data. Several works in occupancy estimation [4, 6] base
their model on Conventional HMM and demonstrate its
superior performance. Conventional HMM can be seen as
an automaton, where the probability of moving into the next
state depends exclusively on the previous state.

Figure 2 shows a graphical representation of the different
probabilistic states of Conventional HMM, dedicated to
the problem of occupancy estimation. In Conventional
HMM, the input feature data form the observation states and
each predicted class forms a hidden state. Observation and
hidden states at time ¢ are represented as z; € X and
z¢ € Z, respectively. In our problem formulation, z; is the
feature set extracted by the sensors and z; is the number of
occupants at time ¢t. Three parameters should be defined, to
formulate HMM; the starting hidden state probability matrix
stp = {st; : 1 < i < n}, where st; is the probability of
moving from the starting state to state ¢, the hidden state
transition probability matrix A = {a;; : 1 <4,j < n}, where
a;; is the probability of moving from state ¢ to state j and
the emission probability B = {b;(x:) : 1 < i < n}, where
b; is the probability of an observation z; being generated
from a state ¢. Emission probability B is given in the form of
Probability Distribution Function (PDF). Several models exist
to approximate PDF, but Gaussian Mixture Model (GMM) is
well used to express multidimensional complex feature spaces.
GMM is a linear combination of normal Gaussian Model (GM),
which is expressed as follows:

GM(z|, %) = meaﬁp{%(a:u)TE_l(xu)}

where z is the feature vector,  and X are the average and
covariance matrices of z, respectively. Finally, parameter m
defines the dimension of z. GMM is formulated as follows:
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Fig. 2: Hidden Markov Model

GMM (x|, k) = S8 €, GM (| puse, S ),
0<e <1,XE e=1

where ¢, is the mixing coefficient and K is the number of
GM used. Note that optimizing the input parameters of GMM,
Wk, 2k, €k, With sufficient number of GM can appropriately
approximate PDF. A common approach for optimizing the
parameters is the Expectation-Maximization (EM) algorithm.
Once the parameters are obtained and HMM is formulated, the
testing data are classified using Viterbi algorithm [7].

Note that the Conventional HMM uses the entire feature
set z to calculate the emission probability matrix. Hence, it
utilizes sensors data derived by all rooms. However, in real
conditions, only few rooms are occupied simultaneously and
the occupied rooms depend on the number of occupants (see
Section IV-B). Thus, the calculation of emission probability
over the entire feature set can be noisy.

Figure 3 illustrates our proposed Location-Aware
model, which is able to dynamically adapt the feature set based
on the occupants locations, i.e., occupied rooms. We extend
the observation states, where each one represents a room (e.g.,
living room) or a combination of them (e.g., living room and
kitchen). Figure 3 omits some states for brevity. The emission
probability matrix B is calculated over the new observation
states and it takes into consideration only the feature space of
the occupied room. This modification will allow the reduction
of noise introduced by non-relevant features.

Algorithm 1 outlines our proposed Location-Aware
HMM. It takes as input a dataset D, a time duration ¢ and
extracts a set Z, which contains the estimation of occupants
number for each dataset of duration ¢, D;. At first step, it splits
D into D;. For each D, it dynamically selects the feature set
by detecting the occupied room (line 2). A room is considered
occupied, if its motion sensor s; € Sp,otion 1S firing for at
least | seconds during t. Note that if the value of parameter
l is too small, the system becomes very sensitive in detecting
occupied rooms, leading to false alarms. On the contrary, if
l approaches t the system may miss an occupied room. We
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Algorithm 1 Location-Aware HMM

Require: Dataset D, Time Duration ¢

Ensure: Occupancy estimation set Z for each D, € D
1: for D; € D do
2. for s; € Siotion do

3: if fire_durationi(s;) € xy > % * t then
boo bon
4 B+ |0 . , Where
bil AN bzn
bin =PDF(x¢|2), s.t. [PDF(z) =1
end if

5
6 end for

7. HMM <HMM (stp, A, B)

8: Z <« ZUViterbi (HMM)
9: end for

have empirically seen that for [ = % x ¢ (line 3), we get the
best accuracy. Given the feature set x; of the occupied rooms,
the algorithm calculates the new emission probability (line 4).
Finally, the Conventional HMM is performed over the new
emission probability (line 7) and the number of occupants for
D; is estimated (line 8).

IV. EXPERIMENTAL STUDY
A. Data collection

Our dataset has been collected from a real setting, deployed
in an one-bedroom apartment of two residents in Grenoble,
France. A set of non-intrusive sensors has been placed in each
room, measuring the environmental conditions and motion
activities. Figure 4 illustrates the apartment’s floor plan, along
with the location of each sensor. A circle represents a Z-
Wave multisensor ! gathering motion, temperature, humidity
and lighting information. Similarly, a square represents a
Netatmo 2 weather station gathering COs, pressure and sound
level information. The latter information is only available at

1 2

aeotec.com/z-wave-sensor www.netatmo.com
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the living room. The accuracy of all multisensors varies as
little as 0.2 % and the maximum delay in sensing is 10 secs.
For the purpose of our experiments, data of two time periods
were collected. The first period corresponds to a holiday week
(1%-5'" Nov), while the second corresponds to working days
(16'7-18*" Nov). Those two periods were selected as they
exhibit a high difference in their underlying distributions, due
to different habits of daily and vacations life of the residents.
To assess our analysis, we use a Leave-One-Out (LOO) cross
validation, where data of one day are used as the validation
set and the remaining days as the training set. The sampling
resolution of data is set to ¢ = 3 minutes, by averaging.
We consider this resolution as a reasonable choice, since it
provides enough data for analysis without estimation delay.
The collection and storage of data is performed using
sensiNact > middleware. SensiNact is an open source eclipse
platform, enabling the collection, processing and redistribution
of IoT data. Moreover, a graphical annotation system is
created, allowing the residents to annotate changes in the
number of occupants. A ground truth of 56 annotations was
created with the number of occupants varying between 0-3.

B. Feature Space

Table I summarizes a set of environmental features (first
row) that have been shown to be effective in [6, 12, 13]. This
set refers to C'Oy concentration, sound level, temperature, etc,
which are features provided directly by the sensors.

In this work, we are interested in going beyond the set of
environmental features and study the dynamics of occupants
location over time. For this purpose, we make two assumptions
of daily life habits, regarding the indoor motion patterns of
residents. First, we assume that the higher the number of
occupants, the more likely a sensor in communal area (resp.,
private) to be triggered for longer (resp., shorter). Residents
are more likely to stay longer (resp., shorter) at the living

TABLE I: FEATURE SPACE

Enviro- COa, Sound, Temperature, Humidity, Pressure, Lighting
nmental
. . _ fire_durationt(s;)
+ L\ . Jrre aurationt(S;)
Motion fire_ratio¢(s;) T

. ire_duration(s;)Nfire_durationt(s;
CO_fl?"Et(Si,Sj) f t( 7)tf f( ])

3 https://projects.eclipse.org/proposals/eclipse-sensinact

HEl One Occupant

80 B Two Occupants
. Three Occupants
&

c
5 60
©
o
a
40
=
=
[T
) I J
o Im | '
£ £ S ko] £ e = £ =
S 9] = = g 5 ] = 5]
[ ) S g o o] 5 S o
kel o = s 4 = 2 =
5 o < I = = A =
2 | £ @ =) ¥ £
@ = c S m £ E ]
:I = 5 = | = £ o m
pa} e © c 5 e} =
5 | = o =l [} x £
= c o _g o % e} S &
[ S S 1 ® E 4 c <)
5 2 ° ® s o [} = ©
o © | = =] o £ =
| 5 o = 3, = = = 2
o © = ) @ g 5] =
= | = o = = =
2 = 5 2 5 =)
&= e W= o) [
= ol 3] =
OI 5} |
° 8

Fig. 5: Firing Duration of Motion Features

room (resp., toilet), when they have guests than when they
are alone. Second, we assume that the higher the number of
occupants, the less likely is to fire multiple motion sensors
simultaneously. Visitors are more likely to stay in a particular
room, than wandering around the rooms.

Table I presents a proposed set of motion features (second
row), capturing the above assumptions. The first feature,
fire_ratio(s;), indicates the ratio of the firing duration (i.e.,
fire_duration;(s;)) of a particular motion sensor s; during
time interval ¢. The second feature, co_fire.(s;, s;), indicates
the co-firing duration of a pair of sensors (s;, s;) during .

Figure 5 shows the average firing duration (y-axis) for
the various motion features (x-axis). We notice that the
average firing duration of sensors in communal areas (i.e.,
LivingRoom, Kitchen) is longer when the house is occupied
by guests, than by the permanent residents. Similarly, private
areas (i.e., bedroom, toilet) have shorter occupancy duration
while guests are in the house. Moreover, we notice that the
co_fire ratio duration of all pair of rooms is lower when
there are guests in the house. There is only one exception,
the co_fire(LivingRoom, Kitchen) duration, which remains
high when there are guests. This behavior is explained by the
fact that the living room and the kitchen belong to the same
common area, where occupants stay during visiting time. The
aforementioned observations confirm our initial assumptions
about the motion patterns of occupants.

C. Feature selection

Given the above feature space, we are interested in studying
the discriminating ability of each feature in estimating the
number of occupants. We explore two characteristics of the
features using filtering selection [17] approaches. First, the
correlation of each feature with each other. If two features are
highly correlated, then we consider that one does not add any
additional value, as it is determined by the other. Second the
correlation of each feature with the output class (i.e., number
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Fig. 6: Feature Selection via Filtering Approaches

of occupants). If a feature has a low correlation to the output
class, it appears a low discriminating ability in predicting it.
To this end, features exhibiting a high correlation between
each other or a low correlation with the predicted class are
eliminated from our analysis.

Figure 6a illustrates a heatmap, using Pearson correlation
co-efficient similarity between all features during the occu-
pied hours. Warmer intensities of color stand for stronger
correlation between features, while cooler colors represent
weaker correlations. We notice three different areas of interest,
which form squares. The first square, at the upper left corner,
demonstrates the correlation between the firing duration of
various motion sensors (i.e., fire_duration;(s;)). We notice
that every single sensor exhibits a slight correlation with
each other (less than 0.5), caused by the fact that people
wander around the house using its facilities. However, the
sensors in the kitchen and in the living room exhibit a higher
correlation (more than 0.6). Since those two rooms are in a
single space, they tend to trigger their sensors simultaneously.
For this reason, we exclude from our analysis their co-firing
duration feature. In the second square, a high correlation
between humidity data of different rooms is observed. This
high correlation arises from the fact that humidity does not
significantly vary between different rooms. The indication of
humidity is mainly affected by the weather conditions (e.g.,
rainy or sunny day), than the indoor location of the sensor.
On the contrary, humidity in the bathroom follows a different
behavior. Since bathroom’s humidity is increasing during
shower time, its correlation with the humidity of other rooms
is dramatically decreased. Another point to be added is that
pressure (last row of heatmap) seems to be highly correlated
and to be able to determine humidity. To this end, we omit
from our analysis all humidity features, except humidity in the

bathroom and maintain pressure as an equivalent alternative
feature. Similar observations can be made, when exploring
data of luminance (third square). Kitchen, living room and
bedroom are highly correlated, since all three rooms have
natural light during day. On the contrary, bathroom and toilet
exhibit a lower correlation, since they are internal rooms of
no natural light. For our analysis, we exclude the luminance
of the living room and bedroom.

Figure 6b depicts a ranking of features, based on their
ability to predict the output class, as given by the p-value
of ANOVA [18] statistical test. We notice that environmental
features, such as pressure, temperature, sound and C'O5 con-
centration are highly ranked. Moreover, motion features, such
as fire_ratio and co_fire are good estimators of occupancy.
This result reaffirms the primary good design of those features
capturing the indoor motion patterns of occupants. Figure 6b
presents all features used for the rest of our analysis.

D. Occupancy Estimation

To validate the effectiveness of Location-Aware HMM,
we compare it with the state-of-the-art Conventional
HMM. To ensure a fair comparison, we first retrieve the best
feature set for each algorithm, by applying a wrapper [1]
selection method. The method starts with an empty feature set
and then sequentially adds a new feature to the set. Each time a
new feature is added, the accuracy of the method is calculated.
The feature set exhibiting the best accuracy is selected for the
comparison. Based on this feature set, we compare the two
algorithms using a Leave-One-Out (LOO) cross validation.

Figure 7 depicts the accuracy (y-axis) of the two algo-
rithms for sequentially increasing subsets of features (z-
axis). We notice that Location-Aware HMM systematically
outperforms the Conventional HMM and reaches its best
performance when using the top-23 features. Given this feature
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space, Location—-Aware HMM needs 620 secs to perform
the estimation on the entire dataset, instead of 586 secs for
Conventional HMM. The extra computational cost is due
to the dynamic adaptation of the feature space.

Figure 8 illustrates the accuracy of each algorithm (y-axis),
when estimating the number of occupants for a particular day
(z-axis). For the purpose of the evaluation, we trained all
algorithms over the data of all other dates (than training) and
over their best feature set. We notice that Location—-Aware
HMM reaches an accuracy of 90% and it outperforms the
Conventional HMM, regardless of the date. Even when it
appears a lower performance (for date 2), their difference is not
statistically significant. This behavior indicates the superiority
of our algorithm, which is thanks to its initial design and its
ability to dynamically adapt the feature space. The adaptation
of the feature space seems to reduce the noise and to favor the
occupancy estimation accuracy. Another aspect to be adduced
is that our algorithm performs well even for data of different
periods, i.e. daily life and vacations, which exhibit highly
different underlying distributions.

V. CONCLUSION

To deal with the dynamics of occupant’s location for the
task of occupancy estimation, we proposed a modeling of
their indoor motion patterns. We noticed that visitors are more
likely to move in communal areas than private, while residents
are more likely to wander around the house when they are
alone. We showed that those two motion patterns, along
with environmental features are good estimators of occupancy.
We designed and implemented a Location-Aware HMM
algorithm, which enables the dynamic adaptation of the feature
space based on the occupant’s location. We showed that this
adaptation is positively affecting the probability of selecting
the predicted class and reaches up to 10% better accuracy than
Conventional HMM.
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