F. J. Ordóñez, P. Toledo, and A. Sanchis, Sensor-based Bayesian detection of anomalous living patterns in a home setting, Personal and Ubiquitous Computing, vol.19, issue.2, pp.259-270, 2015.

N. Goonawardene, X. Toh, and H. Tan, Sensor-driven detection of social isolation in community-dwelling elderly, International Conference on Human Aspects of IT for the Aged Population, pp.378-392, 2017.

I. De-la-torre-díez, S. Alonso, S. Hamrioui, E. Cruz, L. Morón et al., IOT-based services and applications for mental health in the literature, Journal of Medical Systems, vol.43, issue.12, 2018.

X. Fan, Q. Xie, X. Li, H. Huang, J. S. Wang et al., Activity recognition as a service for smart home: Ambient assisted living application via sensing home, Proceedings -2017 IEEE 6th International Conference on AI and Mobile Services, pp.54-61, 2017.

C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, A framework for clustering evolving data streams, Proceedings of the 29th International Conference on Very Large Data Bases, VLDB Endowment, vol.29, pp.81-92, 2003.

D. Sculley, Web-scale k-means clustering, Proceedings of the 19th international conference on World wide web, ACM, pp.1177-1178, 2010.

P. J. Rousseeuw, Silhouettes: a graphical aid to the interpretation and validation of cluster analysis, Journal of Computational and Applied Mathematics, vol.20, pp.53-65, 1987.

, Eclipse sensiNact

M. Yoshida, S. Kleisarchaki, L. Gürgen, and H. Nishi, Indoor Occupancy Estimation via Location-Aware HMM: An IoT Approach, IEEE 19th International Symposium on "A World of Wireless, Mobile and Multimedia Networks" (WoWMoM), pp.14-19, 2018.
URL : https://hal.archives-ouvertes.fr/cea-02313771

P. M. Granitto, C. Furlanello, F. Biasioli, and F. Gasperi, Recursive feature elimination with random forest for PTR-MS analysis of agroindustrial products, Chemometrics and Intelligent Laboratory Systems, vol.83, issue.2, pp.83-90, 2006.

L. Breiman, Random forests, Machine Learning, vol.45, pp.5-32, 2001.

G. Louppe, L. Wehenkel, A. Sutera, and P. Geurts, Understanding variable importances in forests of randomized trees, Advances in Neural Information Processing Systems, pp.431-439, 2013.

R. Marxer and H. Purwins, An f-measure for evaluation of unsupervised clustering with non-determined number of clusters, pp.1-3, 2008.

L. Chen, C. D. Nugent, and H. Wang, A knowledge-driven approach to activity recognition in smart homes, IEEE Transactions on Knowledge and Data Engineering, vol.24, issue.6, pp.961-974, 2012.

J. Ye, G. Stevenson, and S. Dobson, KCAR: A knowledge-driven approach for concurrent activity recognition, Pervasive and Mobile Computing, vol.19, pp.47-70, 2015.

G. Singla, D. J. Cook, and M. Schmitter-edgecombe, Incorporating temporal reasoning into activity recognition for smart home residents, Proceedings of the AAAI Workshop on Spatial and Temporal Reasoning, pp.53-61, 2008.

Y. Chiang, K. Hsu, C. Lu, L. Fu, J. Y. et al., Interaction models for multiple-resident activity recognition in a smart home, p.2010

, IEEE, pp.3753-3758, 2010.

R. Chen and Y. Tong, A two-stage method for solving multi-resident activity recognition in smart environments, Entropy, vol.16, issue.4, pp.2184-2203, 2014.

C. Lu and L. Fu, Robust location-aware activity recognition using wireless sensor network in an attentive home, IEEE Transactions on Automation Science and Engineering, vol.6, issue.4, pp.598-609, 2009.

D. Puschmann, P. M. Barnaghi, and R. Tafazolli, Adaptive clustering for dynamic iot data streams, IEEE IoT, vol.4, pp.64-74, 2017.

S. Kleisarchaki, S. Amer-yahia, A. Douzal-chouakria, and V. Christophides, Querying temporal drifts at multiple granularities, Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp.1531-1540, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01182742

G. Azkune, A. Almeida, D. López-de-ipiña, and L. Chen, Extending knowledge-driven activity models through data-driven learning techniques, Expert Systems with Applications, vol.42, issue.6, pp.3115-3128, 2015.

L. Meng, C. Miao, and C. Leung, Towards online and personalized daily activity recognition, habit modeling, and anomaly detection for the solitary elderly through unobtrusive sensing, Multimedia Tools and Applications, vol.76, issue.8, pp.10-779, 2017.

J. Ye, G. Stevenson, and S. Dobson, USMART: An unsupervised semantic mining activity recognition technique, ACM Transactions on Interactive Intelligent Systems (TiiS), vol.4, issue.4, p.16, 2015.