D. Zheng and J. Wu, Sulfur Dioxide Insertion Reactions for Organic Synthesis, 2017.

A. S. Deeming, C. J. Russel, A. J. Hennessy, and M. C. Willis, Org. Lett, p.150, 2014.

B. N. Rocke, K. B. Bahnck, M. Herr, S. Lavergne, V. Mascitti et al., Org. Lett, p.154, 2014.

Y. Chen and M. C. Willis, Chem. Sci, vol.8, p.3249, 2017.

Y. Nakao and T. Hiyama, Chem. Soc. Rev, p.4893, 2011.

L. Bouchez and P. Vogel, Synthesis, 2002.

M. Zheng, L. Chen, J. Yao, R. Wu-;-d.-zheng, Z. Mao et al., 3, 985; c), Angew. Chem. Int. Ed, vol.3, p.5616, 2016.

Y. Hatanaka and T. Hiyama, Chem. Lett, 1989.

M. Tiwari, C. M. Vinit, and . Ramachandran, Chem. Phys. Lett, p.111, 2019.

G. Pelzer, J. Herwig, W. Keim, and R. Goddard, Russ. Chem. Bull, p.904, 1998.

H. Woolven, C. Gonzalez-rodriguez, I. Marco, A. L. Thompson, and M. C. Willis, Org. Lett, p.4876, 2011.

Y. Hatanaka, K. Goda, and T. Hiyama, Tetrahedron Lett, p.6511, 1994.

Y. Hatanaka, S. Fukushima, and T. Hiyama, Tetrahedron, vol.48, p.2113, 1992.

C. Amatore, L. Grimaud, G. L. Duc, and A. Jutand, Angew. Chem, p.7102, 2014.

, Indeed, because of the steric pressure induced by its wide bite angle (111°), Xantphos is known to promote difficult reductive eliminations, notably with weakly nucleophilic partners. See: a), A rate-determining reductive elimination is in addition compliant with the higher efficiency of Xantphos as a ligand (Table 1 and S1), vol.34, p.895, 2001.

V. V. Grushin, W. J. Marshall-;-c)-k.-fujita, M. Yamashita, F. Puschmann, M. M. Alvarez-falcon et al., J. Am. Chem. Soc, vol.128, p.9044, 2006.

. Troupel, showed that oxidative addition is facilitated with electron-poor electrophiles (?>0, J. Org. Chem, p.419, 1981.

G. Maan, D. Baranano, J. F. Hartwig, A. L. Rheingold, A. L. et al., J. Am. Chem. Soc, p.9205, 1998.