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Abstract. Nuclear data are widely used in many research fields. In particular, neutron-induced reaction cross
sections play a major role in safety and criticality assessment of nuclear technology for existing power reactors
and future nuclear systems as in Generation IV. Because both stochastic and deterministic codes are becoming
very efficient and accurate with limited bias, nuclear data remain the main uncertainty sources. A worldwide
effort is done to make improvement on nuclear data knowledge thanks to new experiments and new adjustment
methods in the evaluation processes. This paper gives an overview of the evaluation processes used for nuclear
data at CEA. After giving Bayesian inference and associated methods used in the CONRAD code [P. Archier
et al., Nucl. Data Sheets 118, 488 (2014)], a focus on systematic uncertainties will be given. This last can be deal
by using marginalization methods during the analysis of differential measurements as well as integral
experiments. They have to be taken into account properly in order to give well-estimated uncertainties on
adjusted model parameters or multigroup cross sections. In order to give a reference method, a new stochastic
approach is presented, enabling marginalization of nuisance parameters (background, normalization...). It can
be seen as a validation tool, but also as a general framework that can be used with any given distribution. An
analytic example based on a fictitious experiment is presented to show the good ad-equations between the
stochastic and deterministic methods. Advantages of such stochastic method are meanwhile moderated by the
time required, limiting it’s application for large evaluation cases. Faster calculation can be foreseen with nuclear
model implemented in the CONRAD code or using bias technique. The paper ends with perspectives about new
problematic and time optimization.
1 Introduction

Nuclear data continue to play a key role, as well as
numerical methods and the associated calculation schemes,
in reactor design, fuel cycle management and safety
calculations. Due to the intensive use of Monte-Carlo
tools in order to reduce numerical biases, the final accuracy
of neutronic calculations depends increasingly on the
quality of nuclear data used. The knowledge of neutron
induced cross section in the 0 eV and 20MeV energy range
is traduced by the uncertainty levels. This paper focuses
on the neutron induced cross sections uncertainties
evaluation. The latter is evaluated by using experimental
data � either microscopic or integral, and associated
uncertainties. It is very common to take into account the
statistical part of the uncertainty using the Bayesian
inference. However, systematic uncertainties are not often
taken into account either because of the lack of information
from the experiment or the lack of description by the
evaluators.
dwin.privas@gmail.com
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A first part presents the ingredients needed in the
evaluation of nuclear data: theoretical models, microscopic
and integral measurements. A second part is devoted to the
presentation of a generalmathematical framework related to
Bayesian parameters estimations. Two approaches are then
studied: a deterministic and analytic resolution of the
Bayesian inference and a method using Monte-Carlo
sampling.Thenextpart dealswith systematicuncertainties.
Moreprecisely, anewmethodhasbeendevelopedto solve the
Bayesian inference using only Monte-Carlo integration. A
final part gives a fictitious example on the 235U total cross
section and comparison between the different methods.
2 Nuclear data evaluation

2.1 Bayesian inference

Let y ¼ ~yiði ¼ 1 . . .NyÞ denote some experimentally mea-
sured variables, and let x denote the parameters defining the
model used to simulate theoretically these variables and t is
the associated calculated values to be compared with y.
Using Bayes’ theorem [1] and especially its generalization to
mons Attribution License (http://creativecommons.org/licenses/by/4.0),
in any medium, provided the original work is properly cited.
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Fig. 1. General overview of the evaluation process.
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continuous variables, one can obtain thewell known relation
between conditional probability density functions (written p
(.)) when the analysis of a new dataset y is performed:

pðxjy;UÞ ¼ pðxjUÞ⋅pðyjx;UÞ
∫dx⋅pðxjUÞ⋅pðyjx;UÞ

; ð1Þ

whereU represents the “background” or “prior” information
from which the prior knowledge of x is assumed. U is
supposed independent of y. In this framework, the
denominator is just a normalization constant.

The formal rule [2] used to take into account
information coming from new analyzed experiments is:

posterior∝prior⋅likelihood: ð2Þ
The idea behind fitting procedures is to find an

estimation of at least the first two moments of the
posterior density probability of a set of parameters x,
knowing an a priori information (or first guess) and a
likelihood which gives the probability density function of
observing a data set knowing x.

Algorithms described in this section are summarized
and detailed description can be found in paper linked to the
CONRAD code in which they are implemented [3]. A
general overview of the evaluation process and the conrad
code is given in Figures 1 and 2.
Fig. 2. General overview of the CONRAD code.
2.2 Deterministic theory

To obtain an equation to be solved, one has to make
some assumptions on the prior probability distribution
involved.

Given a covariance matrix andmean values, the choice of
amultivariate joint normal for theprobability density pðxjUÞ
and for the likelihood is maximizing the entropy [4]. Adding
Bayes’ theorem, equation (1) can be written as follow:

pðxjy;UÞ∝e�1
2½ðx�xmÞTM�1

x ðx�xmÞþðy�tÞTM�1
y ðy�tÞ�; ð3Þ

where xm (expectation) and Mx (covariance matrix) are
prior information on x, y an experimental set and My the
associated covariance matrix. t represents the theoretical
model predictions.

The Laplace approximation is also made. It enables
to approximate the posterior distribution by a multivariate
normal distribution with the samemaximum and curvature
of theright sideof equation(3).Then, it canbedemonstrated
that both the posterior expectation and the covariances can
be calculated by finding the minimum of the following cost
function (Generalized Least Square):

x2
GLS ¼ ðx� xmÞTM�1

x ðx� xmÞ þ ðy� tÞTM�1
y ðy� tÞ: ð4Þ

To take into account non-linear effects and ensure a
proper convergence of the algorithm, a Gauss–Newton
iterative solution can be used [5].

Thus, from a mathematical point of view, the
evaluation of parameters through a GLS procedure suffers
from the Gaussian choice as guessed distribution for the
prior and the likelihood, the use of Laplace approximation,
the linearization around the prior for Gauss-Newton
algorithm and at last a 2nd order terms neglected in the
Gauss–Newton iterative procedure.
2.3 Bayesian Monte-Carlo

Bayesian Monte-Carlo (BMC) methods are natural
solutions for Bayesian inference problems. They avoid
approximations and propose alternatives in probability
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density distribution choice for priors and likelihoods. This
paper exposes the use of BMC in the whole energy range
from thermal, resonance to continuum range.

BMC can be seen as a reference calculation tool to
validate the GLS calculations and approximations. In
addition, it allows to test probability density distributions
effects and to find higher distribution moments with no
approximations.
2.3.1 Classical Bayesian Monte-Carlo

The main idea of “classical” BMC is the use of Monte-Carlo
techniques to calculate integrals. For any function f of
random variable set x, any integral can be calculated by a
Monte-Carlo sampling:Z

pðxÞ⋅fðxÞdx ¼ lim
n∞!

1

n

Xn
k¼1

fðxkÞ
 !

; ð5Þ

where p(x) is a probability density function. One can thus
estimate any moments of the probability function p(x). By
definition, the mean value is given by:

〈 x 〉 ¼
Z

x⋅pðxÞdx: ð6Þ

Application of these simple features to Bayesian inference
analysis gives for posterior distribution’s expectation
values:

〈x 〉 ¼
Z

x⋅
pðxjUÞ⋅pðyjx;UÞZ
pðxjUÞ⋅pðyjx;UÞdx

dx: ð7Þ

The proposed algorithm to find out the first two
moments of the posterior distribution is to sample the prior
probability distribution function pðxjUÞNx times and for
each xk realization evaluate the likelihood:

Lk ¼ pðykjxk;UÞ: ð8Þ
Finally, the posterior expectation and covariance is

given by the following equation:

〈xi 〉 Nx ¼

XNx

k¼1

xi;kLk

XNx

k¼1

Lk

; ð9Þ

〈xi;xj 〉 Nx ¼

XNx

k¼1

xi;k⋅xj;k⋅Lk

XNx

k¼1

Lk

� 〈xi 〉Nx 〈xj 〉 Nx : ð10Þ

The choice of the prior distribution depends on what
kind of analysis is done. If no prior information is given, a
non-informative prior could be chosen (uniform distribu-
tion). On the contrary, for an update of a given parameters
set, the prior is related to a previous analysis with a known
probability distribution function.
The use of Lk weights indicates clearly the major
drawbacks of this classical BMC method: if the prior is far
from high likelihood values and/or by nature Lk values are
small (because of the number of experimental points for
example), then the algorithm will have difficulties to
converge.

Thus, the main issue is that the covered phase space of
sampling is not favorable to convergence. In practice a trial
function close to the posterior distribution should be
chosen for sampling.

More details can be found in paper [6].

2.3.2 Importance sampling

As previously exposed, the estimation of the integral of f(x)
times a probability density function p(x) is not straightfor-
ward. Especially in this Bayesian inference case, sampling
the prior pðxjUÞ distribution, when it is far away from the
posterior distribution or when the likelihood weights are
difficult to evaluate properly, could be very expensive and
timeconsumingwithoutanyvaluable estimationofposterior
distributions. The idea is then to sample in a different phase
space region by respecting statistics.

This trial probability density function ptrial(x) can be
introduced by a trick as follow:

pðxÞ ¼ pðxÞ
ptrialðxÞ

⋅ptrialðxÞ: ð11Þ

Thus, putting this expression in equation (5), one
obtains the following equation:

Z
pðxÞ⋅fðxÞdx ¼ lim

n∞!
1

n

Xn
k¼1

pðxkÞ
ptrialðxkÞ

⋅fðxkÞ
 !

: ð12Þ

Then, sampling is done on the trial probability density
function ptrial(x) getting a new set of {xk}. For each
realization xk, an evaluation of additional terms pðxÞ

pbiasðxÞ
� �

is
necessary.

As a result, expectation and covariances are defined by:

〈xi 〉Nx ¼

XNx

k¼1

xi;k⋅hðxkÞ⋅Lk

XNx

k¼1

hðxkÞ⋅Lk

; ð13Þ

and

〈xi;xj 〉Nx ¼

XNx

k¼1

xi;k⋅xj;k⋅hðxkÞ⋅Lk

XNx

k¼1

hðxkÞ⋅Lk

� 〈xi 〉Nx 〈xj 〉 Nx ; ð14Þ

with hðxkÞ ¼ pðxkjUÞ
ptrialðxkÞ.

The choice of trial functions is crucial and the closer
to the true solution ptrial(x) is, the quicker the algorithm
will be. In this paper, a trial function used by default
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comes from the result of the generalized least square
(with additional standard deviation enhancement).
Many other solutions can be used depending on the
problem.
3 Systematic uncertainties treatment

3.1 Theory

Let recall some definitions and principles. First, it is
possible to link model parameters x and nuisance
parameters u with conditional probability:

pðx; ujy;UÞ ¼ pðxju; y;UÞ⋅pðujy;UÞ; ð15Þ
with U the prior information on both model and nuisance
parameters. The latter is supposed independent to the
measurement. It means nuisance parameters are consid-
ered acting on experimental model. It induces
pðujy;UÞ ¼ pðujUÞ; giving the following equation:

pðx; ujy;UÞ ¼ pðxju; y;UÞ⋅pðujUÞ: ð16Þ
Moreover, evaluators are looking at the marginal

probability density pðx; ujy;UÞ; also written puðxjy;UÞ. It
is given by the integration of the probability
density function over marginal variables as follow:

puðxjy;UÞ ¼
Z

pðx; ujy;UÞdu: ð17Þ

According to (16), the follow equation is obtained:

puðxjy;UÞ ¼
Z

pðxju; y;UÞ⋅pðujUÞdu: ð18Þ

Then the Bayes theorem is used to calculate the first
integral term of (18):

pðxju; y;UÞ ¼ pðxjUÞ⋅pðyju; x;UÞZ
pðxjUÞ⋅pðyju; x;UÞdx

: ð19Þ

This expression is right if both model and nuisance
parameters are supposed independent. According to (18)
and (19), the marginal probability density function of the a
posteriori model parameters is given by:

puðxjy;UÞ ¼
Z

pðujUÞdu pðxjUÞ⋅pðyju; x;UÞZ
pðxjUÞ⋅pðyju; x;UÞdx

: ð20Þ

3.2 Deterministic resolution

The deterministic resolution is well described in Habert
thesis [7]. Several works have been first performed in 1972
by H. Mitani and H. Kuroi [8,9] and later by Gandini [10]
giving a formalism to the multigroup adjustment and a
way to take into account the systematic uncertainties.
These were the first attempts to consider the possible
presence of systematic errors in a data adjustment
process. Equations are not detailed here, only the idea
and the final equation is provided.

Let Mstat
x be the a posteriori covariance matrix

obtained after an adjustment. The a posteriori covariance
after marginalization Mmarg

x can be found as
follow:

Mmarg
x ¼ Mstat

x þ ðGT
xGxÞ�1⋅GT

x ⋅GuMuG
T
u ⋅Gx⋅ðGT

xGxÞ�1

ð21Þ

with Gx sensitivities vector of the calculated model values
to the model parameters and Gu sensitivities vector of the
calculated model values to the nuisance parameters.
Similar expressions have been given in reference [8,9]
where two terms appear: one for classical resolution and the
second for some added systematic uncertainties. ðGT

xGxÞ is
a square matrix supposed reversal. It is often the case
when there are more experimental points than fitted
parameters. If numeric issues appeared, it is mandatory to
find another way, giving by a stochastic approach. Further
study should be undertaken to compare the deterministic
method proposed here and the one identified in Mitani’s
papers in order to provide a more robust approach.

3.3 Semi-stochastic resolution

This method (written MC_Margi) is easy to understand
starting from the equation (20): nuisance parameters
are sampled according to a Gaussian distribution and
for each history, a deterministic resolution is done (GLS).
At the end of every simulation, parameters and covariances
are stored. When all the histories have been simulated, the
covariance total theorem gives the final model parameters
covariance. The methods is not developed here but more
detailed can be found in papers [7,11].
3.4 BMC with systematic treatment

BMC method can deal with marginal parameters
without deterministic approach. This work has been
successfully implemented in the CONRAD code. One
wants to find the posterior marginal probability function
defined in equation (20). It is similar to the case with no
nuisance parameters but with two integrals. Same
weighting principle can be applied by replacing the
likelihood term by a new weight wuðxjyÞ defined by:

wuðxjyÞ ¼
Z

pðujUÞ⋅pðyju; x;UÞZ
pðxjUÞ⋅pðyju; x;UÞdx

du: ð22Þ

The very close similarities between the case with no
marginal parameter enabled a quick implementation
and understanding. Finally, the previous equation
gives:

puðxjy;UÞ ¼ pðxjUÞ⋅wuðxjyÞ: ð23Þ



Table 1. 238U spin configuration considered for resonance
waves s and p.

l s Jp gJ onde
238U (0+) 0 1/2 1/2+ 1 s

1 1/2 1/2� 3/2� 1 2 p

Table 2. Initial URR parameters with no correlation.

Parameters Values

S0 1.290� 10�4± 10%
S1 2.170� 10�4± 10%
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Both integrals can be solved using a Monte-Carlo
approach. The integral calculation of the equation (22) is
done as follow:

wuðxjyÞ ¼ lim
nu→∞

1

nu

Xnu
l¼0

pðyjul; x;UÞZ
pðxjUÞ⋅pðyjul; x;UÞdx

0
BB@

1
CCA: ð24Þ

The nu histories are calculated by sampling according to
pðujUÞ. The denominator’s integral of equation (24) is then
computed:

∀ l∈⟦ 1;nu⟧;Z
pðxjUÞ⋅pðyjul; x;UÞdx ¼ lim

nx→∞

1

nx

Xnx
m¼0

pðyjul;xm;UÞ
 !

:

ð25Þ
The nx histories are evaluated by sampling according to

pðxjUÞ. Mixing equations (24) and (25), the new weight
wuðxjyÞ is given by:

lim
nu→∞

1

nu

Xnu
l¼0

pðyjul; x;UÞ

lim
nx→∞

1

nx

Xnx
m¼0

pðyjul; xm;UÞ
 !

0
BBBB@

1
CCCCA: ð26Þ

Let us consider Nx is the number of history sampled
according the prior parameters and Nu is the number of
history sampled according the marginal parameters. The
larger those number are, the more converge the results will
be. The previous equation can be numerically written with
no limits as follow:

wuðxjyÞ ¼ Nx

Nu

XNu

l¼0

pðyjul; x;UÞXNx

m¼0

pðyjul; xm;UÞ
: ð27Þ

In order to simplify the algorithm, Nu and Nx are
considered equal (introducingN as N=Nu=Nx). First, N
samples are drawn according to uk and xk. Equation (26)
can be simplified as follow:

wuðxjyÞ ¼
XN
l¼0

pðyjul;x;UÞXN
m¼0

pðyjul; xm;UÞ
: ð28Þ
In CONRAD, the N*N values of the likelihood are
stored (i.e. ∀ði; jÞ∈⟦ 1;N⟧2; pðyjuj; xi;UÞ. Those values
are required to perform statistical analysis at the end of
the simulation. The weight for an history k is then
calculated:

wuðxkjykÞ ¼
XN
l¼0

pðykjul; xk;UÞXN
m¼0

pðykjul;xm;UÞ
: ð29Þ

To get the posterior mean values and the posterior
correlation, one should apply the statistical definition and
get the two next equations:

〈x 〉N ¼ 1

N

XN
k¼0

xk⋅
XN
l¼0

pðyjul; xk;UÞXN
m¼0

pðyjul; xm;UÞ
; ð30Þ

Covðxi;xjÞN ¼ ðMxpostÞNx
ij

¼ 〈xixj 〉 N � 〈xi 〉 N 〈xj 〉N ; ð31Þ

with 〈xixj 〉 N defined as the weighting mean of the two
parameters product:

〈xixj 〉N ¼ 1

N

XN
k¼1

xi;k⋅xj;k⋅wuðxkjykÞ: ð32Þ

4 Illustrative analysis on 238U total cross
section

4.1 Study case

The selected study case is just an illustrative example
giving a very first step towards the validation of the
method, its applicability and potential limitations. The
238U total cross section is chosen and fitted on the
unresolved resonance range, between 25 and 175 keV.
The theoretical cross section is calculated using the Rmean
matrix model. The main sensitives parameters in this
energy range is the two first strength functions Sl=0 and
Sl=1. Tables 1 and 2 give respectively the spin config-
urations and the prior parameters governing the
total cross section. An initial relative uncertainties of
15% is taken into account with no correlations.
The experimental dataset used comes from the EXFOR
database [12]. A 1% arbitrary statistical uncertainty is
chosen.



Table 3. Results comparison between the different methods implemented in CONRAD for 238U total cross section.

Physical quantities Prior GLS BMC Importance

S0 (�10�4) 1.290 1.073 1.072 1.073
dS0 (�10�6) 19.35 9.013 9.122 9.020
S1 (�10�4) 2.170 1.192 1.193 1.192
dS1 (�10�6) 32.55 6.089 6.135 6.095
Correlation 0.000 �0.446 �0.425 �0.447
x2 381.6 8.78 8.79 8.78
〈dyi (%) 2.78 0.64 0.65 0.64

Fig. 3. A priori covariance matrix on 238U total cross section.

Table 4. Results comparison when a normalisationmarginal parameter is taken into account. AN_Margi represents the
deterministic method, MC_Margi represents the semi-stochastic resolution, BMC is the classical method and the last
column called Importance is the BMC where an importance function is used for the sampling.

Physical quantities AN MC_Margi BMC Importance

S0 (�10�4) 1.073 1.073 1.063 1.074
dS0 (�10�6) 9.634 9.469 8.939 9.490
S1 (�10�4) 1.192 1.194 1.215 1.193
dS1 (�10�6) 11.60 11.52 8.945 11.54
Correlation 0.081 0.035 �0.061 0.044
〈dyi (%) 1.19 1.17 0.93 1.18

Fig. 4. Aposteriori covariancematrix on 238U total cross section.
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4.2 Classical resolution with no marginal parameters

All the methods have been used to perform the adjustment.
Onemillionhistorieshavenbeensimulated inorder toget the
statistical values converged below 0.1% for the mean values
and 0.4% for the posterior correlation. The convergence is
driven by how far the solution is from the prior values.
Table 3 shows the overall good results coherence. Very small
discrepancies can be seen for the classicalmethods caused by
the convergence issues. For a similar number of history, the
importance methods converged better than the classical
BMC.The prior covariance on the total cross section is given
on Figure 3. The anti-correlation created between S0 and S1
directly give correlations between the low energy and the
high energy (see Fig. 4). The prior and posterior distribution
engaged in the BMCmethods are given in Figure 5. One can
notice the Gaussian distributions for all the parameters
(both prior and posterior).



Fig. 5. S0 and S1 distributions obtained with the classical BMC method.

Fig. 6. S0 mean value convergence. Fig. 7. S1 mean value convergence.
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4.3 Using marginalization methods

This case is very closed to the previous paragraph. But this
time, a nuisance parameter is taken into account. More
precisely, a normalization is considered with a systematic
uncertainties of 1%. 10 000 histories are sampled for the
MC_Margi case (semi-stochastic resolution) and
10 000� 10 000 for BMC methods. For the importance
resolution, the biasing function is the posterior solution
coming from the deterministic resolution. All the results
seem to be equivalent, as shown in Table 4. However, the
classical BMC is not fully converged because slight
differences are found between the means values. Figures 6
and 7 show the mean values convergence using the
stochastic resolutions, showing one more time not
converged results with the classical BMC method.
Calculation time are longer with marginal parameters.
This is explained by the method which the idea is to
perform a double Monte-Carlo integration. The good
coherence on the mean values and correlation between
parameters give identical posterior correlation on the total
cross section. Figure 8 shows the a posteriori covariance,
whatever methods chosen.



Fig. 8. A posteriori covariance of the 238U total cross section.
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5 Conclusions

The use of BMCmethods was exposed in this paper and an
illustrative analysis was detailed. One important point is
that these methods could be used for resonance range
analysis (both resolved and unresolved resonance) as well
as higher energy models. In addition, both microscopic and
integral data assimilation could be achieved. Nevertheless,
the major issue is related to the convergence estimator:
depending on which parameters are investigated (central
values or correlation between them), the number of
histories (sampling) could be very different. Indeed, special
care should be taken for the correlations calculation
because an additional order of magnitude of sampling
histories could be necessary. Furthermore, it was shown
that sampling priors are not a problem. It is more efficient
to properly sample in the phase space region where the
likelihood is large. In this aspect, Importance and
Metropolis algorithms are working better than brute force
(“classical”) Monte-Carlo. It also highlights the fact that
pre-sampling prior with a limited number of realizations
could be inadequate for further inference analysis. The
integral data assimilation with feedback directly on the
model parameter is too much time consuming. However, a
simplified model can be adopted by using a simple model
with a linear approach for instance (to predict integral
parameters response to input parameters). Such approxi-
mation would be less consuming but will erase non-
linearity effect that may be observed in the posterior
distribution. Such study should be performed with
extensive cases to improve the Monte-Carlo methods.
Concerning BMC inference methods, in the future,
other Markov chain algorithms will be developed in
CONRAD code and efficient convergence estimators will
be proposed as well. The choice of Gaussian probability
functions for both prior and likelihood will be challenged
and discussed.

More generally, an open range of scientific activities will
be investigated. In particular, onemajor issue is related to a
change in paradigm: to go beyond covariance matrices and
deal with parameters knowledge taking into account full
probability density distributions. In addition, for end-up
users, it will be necessary to investigate the feasibility of a
full Monte-Carlo approach, from nuclear reaction models
to nuclear reactors or integral experiments (or any other
applications) without format/files/processing issues which
are most of the time bottlenecks.

The use of Monte-Carlo could solve a generic issue in
nuclear data evaluation related to difference of information
given in evaluated files: in the resonance range where cross
section uncertainties and/or nuclear model parameters
uncertainties are compiled and in the higher energy range
where only cross section uncertainties are formatted. This
could simplify the evaluation of full covariance over the
whole energy range.
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