M. Nutt, Spent fuel, 2011.

L. San-felice, R. Eschbach, and P. Bourdot, Experimental validation of the DARWIN2.3 package for fuel cycle applications, Nuclear Technol, vol.184, p.217, 2013.

J. Vidal and C. Ar5, 3: An industrial tool for nuclear fuel and waste characterization with associated qualification, Proc. Int. Conf. WM, 2012.

R. Sanchez, Nucl. Eng. Tech, vol.42, p.474, 2010.

A. Tsilanizara, DARWIN: an evolution code system for a large range of applications, J. Nuclear Sci. Technol, vol.1, p.845, 2000.

A. Santamarina, The JEFF-3.1.1 nuclear data library, JEFF Report, vol.22, 2009.

A. Santamarina and N. Hfaiedh, The SHEM energy mesh for accurate fuel depletion and BUC calculations, Proc. Int. Conf. Nuclear Criticality-Safety ICNC2007, 2007.

J. Taïeb, APOLLO2: test of recently implemented methods applied to the calculation of a large scale heterogeneous cluster, Proc. Int. Conf. PHYSOR 2002, 2002.

J. Vidal, New modeling of LWR assemblies using the APOLLO2 code package, Proc. Joint Int. Topl. Mtg. Mathematics & Computation and Supercomputing in Nuclear Applications (M&C + SNA 2007), 2007.

, Predictive science academic alliance -Program-II (PSAAP-II) -Verification, Validation, and Uncertainty Quantification -Whitepaper (U), LLNL-MI-481471, 2011.

W. Oberkampf, Verification, validation, and predictive capability in computational engineering and physics, Appl. Mech. Rev, vol.57, p.345, 2004.

M. Avramova and K. Ivanov, Verification, validation and uncertainty quatification in multi-physics modeling for nuclear reactor design and safety analysis, Prog. Nuclear Energy, vol.52, p.602, 2010.

C. Jean, Verification, validation and uncertainty quantification for neutronic calculation for ASTRID fast reactor detailed design, Proc. Int. Conf. PHYSOR 2016 Sun, 2016.

E. Brun, E. Dumonteil, and F. Malvagi, Systematic uncertainty due to statistics in Monte Carlo burnup codes: applications to a simple benchmark with TRIPOLI-4-D, Prog. Nuclear Sci. Technol, vol.2, p.879, 2011.

S. Lahaye, First verification and validation steps of MENDEL release V1.0 cycle code system, Proc. Int. Conf. PHYSOR2014, 2014.

A. Rizzo, C. Vaglio-gaudard, J. Fiona-martin, G. Noguère, and R. Eschbach, Work plan for improving the DARWIN2.3 depleted material balance calculation concerning some important isotopes for fuel cycle, Proc. Int. Conf. Nuclear Data for Science and Technology, 2016.

V. Vallet, Validation of the uncertainty propagation method for the decay heat within the DARWIN2.3 package, Proc. ANS Best Estimate Plus Uncertainty Int. Conf. (BEPU 2018), 2018.

S. Lahaye, Comparison of deterministic and stochastic approaches for isotopic concentration and decay heat uncertainty quantification on elementary fission pulse, EPJ Web Conf, vol.11, p.9002, 2016.

P. Archier, COMAC: Nuclear Data Covariance Matrices Library for Reactor Applications, Proc. Int. Conf. PHYSOR 2014, 2014.

F. Gaudier, URANIE: The CEA/DEN uncertainty and sensitivity platform, Procedia-Soc. Behavioral Sci, vol.2, p.7660, 2010.

V. Vallet, Validation of the uncertainty propagation method for the decay heat within the DARWIN2.3 package, Proc. Int. Conf. Best Estimate Plus Uncertainty (BEPU 2018), 2018.

V. Vallet, C. Vaglio-gaudard, and C. Carmouze, Application of the bias transposition method on PWR decay heat calculations with the DARWIN2.3 package, Proc. Int. Conf. GLOBAL2017, 2017.

J. Huyghe, EPJ Nuclear Sci. Technol, vol.5, p.9, 2019.

R. W. Mills, Improved Fission product yield evaluation methodologies, WPEC Subgroup Proposal, 2012.

D. Rochman, A Bayesian Monte Carlo method for fission yield covariance information, Ann. Nuclear Energy, vol.95, p.125, 2016.

N. Terranova, Covariance Evaluation for Nuclear Data of Interest to the Reactivity Loss Estimation of the Jules Horowitz Material Testing Reactor, 2016.

T. D. Huynh, French) 27. International standard, Énergie nucléaire -Réacteurs à eau légère -Calcul de la puissance résiduelle des combustibles nucléaires, JEFF3 et les calculs de puissance résiduelle, 2009.

M. Akiyama, Measurements of Gamma-Ray Decay Heat of Fission Products for Fast Neutron Fission of 235 U, 239 Pu and 233 U, J. Atom. Energ. Soc. Jpn, vol.24, p.709, 1982.

M. Akiyama, Measurement of Fission-product Decay Heat for Fast Reactors, Proc. Int. Conf. Nuclear Data for Science and Technology, vol.237, 1982.

J. K. Dickens, Fission-product energy release for times following thermal-neutron Fission 239, 241 Pu between 2 and 14000 s, Nucl. Sci. Eng, vol.78, p.126, 1981.

J. K. Dickens, Fission-product energy release for times following thermal-neutron fission 235 U between 2 and 14000 s, Nucl. Sci. Eng, vol.74, p.106, 1980.

J. C. Jaboulay and S. Bourganel, Analysis of MERCI decay heat measurement for PWR UO2 fuel rod, Nuclear Technol, vol.177, p.73, 2012.

F. Sturek and L. Agrenius, Measurements of decay heat in spent nuclear fuel at the Swedish interim storage facility CLAB, Svensk Kärnbränslehantering AB, 2006.

V. V. Orlov, Problems of Fast Reactor Physics related to breeding, At. Energy Rev, vol.18, p.4, 1980.

N. Santos, Optimisation de l'approche de représenta-tivité et de transposition pour la conception neutronique de programmes expérimentaux dans les maquettes critiques, 2013.

N. Santos, P. Blaise, and A. Santamarina, A global approach of the representativity concept, Application on a highconversion light water reactor MOX lattice case, Proc. Int

, Conf. Mathematics and Computational Methods Applied to Nuclear Science & Engineering, 2013.

C. Carmouze, The similarity/transposition theory to assess accurately MOX 15 × 15 used fuel inventory with DAR-WIN2.3, Proc. Int. Conf. GLOBAL2017, Seoul, 2017.

J. Rebah, Incertitude sur la puissance résiduelle due aux incertitudes sur les données de produits de fission, 1996.

I. Gauld, Validation of SCALE 5 Decay Heat Predictions for LWR Spent Nuclear Fuel, Oak Ridge National Laboratory, NUREG/CR-6972, 2010.

W. Haeck, Experimental Validation of Decay Heat Calculations with VESTA 2.1, Proc. Int. Conf. PHYSOR 2014, 2014.

B. F. Judson, In-plant test measurements for spent fuel storage at morris operation, Fuel bundle heat generation rates, vol.3, 1982.

F. Schmittroth, ORIGEN2 Calculations of PWR Spent Fuel Decay Heat Compared with Calorimeter Data, 1984.

M. Lott, Puissance residuelle totale emise par les produits de fission thermique de l' 235 U, J. Nucl. Energy, vol.27, p.597, 1973.

H. V. Nguyen, Gamma-ray spectra and decay heat following 235 U thermal neutron fission, 1997.

C. Fiche, F. Defreche, and A. M. Monnier, Mesures calorimetriques de la puissance residuelle totale emise par les produits de fission thermique de 233 U et 239 Pu, Centre d'Études Nucleaires de Cadarache, 1976.

P. Johansson, Integral determination of the Beta and Gamma heat in thermal-neutron-induced Fission of

, Proc

. Int and . Conf, Nuclear Data for Science and Technology, 1987.

H. V. Nguyen, Decay heat measurements following neutron fission of 235 U and 239 Pu, Proc. Int. Conf. Nuclear Data for Science and Technology, 1997.

Y. Kawamoto and G. Chiba, Feasibility of decay heat uncertainty reduction using nuclear data adjustment method with experimental data, J. Nuclear Sci. Technol, vol.54, p.213, 2017.

J. Huyghe, V. Vallet, D. Lecarpentier, C. Reynard-carette, and C. Vaglio-gaudard, How to obtain an enhanced extended uncertainty associated with decay heat calculations of industrial PWRs using the DARWIN2.3 package, EPJ Nuclear Sci. Technol, vol.5, 2019.