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Abstract. Evaluating uncertainties on nuclear parameters such as reactivity is a major issue for conception
of nuclear reactors. These uncertainties mainly come from the lack of knowledge on nuclear and
technological data. Today, the common method used to propagate nuclear data uncertainties is Total
Monte Carlo [1] but this method suffers from a long time calculation. Moreover, it requires as many
calculations as uncertainties sought. An other method for the propagation of the nuclear data uncertainties
consists in using the standard perturbation theory (SPT) to calculate reactivity sensitivity to the desire
nuclear data. In such a method, sensitivities are combined with a priori nuclear data covariance matrices
such as the COMAC set developed by CEA. The goal of this work is to calculate sensitivites by SPT with
the full core diffusion code CRONOS2 for propagation uncertainties at the core level. In this study,
COMAC nuclear data uncertainties have been propagated on the BEAVRS benchmark using a two-step
APOLLO2/CRONOS2 scheme, where APOLLO?2 is the lattice code used to resolve Boltzmann equation
within assemblies using a high number of energy groups, and CRONOS2 is the code resolving the 3D full
core diffusion equation using only four energy groups. A module implementing the SPT already exists in the
APOLLO2 code but computational cost would be too expensive in 3D on the whole core. Consequently, an
equivalent procedure has been created in CRONOS2 code to allow full-core uncertainty propagation. The
main interest of this procedure is to compute sensitivities on reactivity within a reduced turnaround time
for a 3D modeled core, even after fuel depletion. In addition, it allows access to all sensitivites by isotope,
reaction and energy group in a single calculation. Reactivity sensitivities calculated by this procedure with
four energy groups are compared to reference sensitivities calculated by the iterated fission probability
(IFP) method in Monte Carlo code. For the purpose of the tests, dedicated covariance matrix have been
created by condensation from 49 to 4 groups of the COMAC matrix. In conclusion, sensitivities calculated
by CRONOS2 agree with the sensitivities calculated by the IFP method, which validates the calculation
procedure, allowing analysis to be done quickly. In addition, reactivity uncertainty calculated by this
method is close to values found for this type of reactor.

1 Introduction

The studies of conception and safety as well as the
exploitation of the reactor require simulation tools which
have to be adaptative, reliable and able to predict fission
chain reactions. These tools use nuclear and technological
data to model core and physics. But these data contain
uncertainties. The goal of this paper is to suggest a method
able to propagate nuclear data uncertainties at industrial
scale with short calculation time on a 3D modeled core and
therefore to estimate uncertainty due to nuclear data on
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reactivity. This method relies on the sensitivities calcula-
tion due to nuclear data with the full core diffusion code
CRONOS2. This work has been done on a two steps
deterministic calculation scheme APOLLO2/CRONOS2
[2,3] applied on the BEAVRS benchmark [4]. A CRONOS2
procedure calculating reactivity sensitivities to nuclear
data by standard perturbation theory (SPT) [5-7] has been
developed. Sensitivities are available by energy group and
by reaction. The obtained results about sensitivities are
compared to iterated fission probability (IFP) calculations
[8-10]. These sensitivities will be used in uncertainties
calculations on reactivity with condensed covariance
matrix to determined uncertainty du to nuclear data on
BEAVRS core.
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Fig. 1. Composition of BEAVRS core at cycle 1.

2 The BEAVRS benchmark

The Massachusetts Institute of Technology has proposed a
benchmark of the BEAVRS reactor [4] based on two
operational cycles to provide a highly-detailed PWR test
case for the validation of high-fidelity core analysis
methods. It is one of Beaver Valley plants reactor with a
931 MW electric power, located in Pennsylvania in the
United States. The benchmark contains all the detailed
material compositions and geometrical data for the major
core constituents including the assemblies, baffle and the
barrel. The core radius is about 2 m and its height is 4.5 m.
In hot zero power (HZP) conditions, the core temperature
is 567 K with a 155 bar pressure. The core reactivity is
controlled by boric acid contained in the water of the
primary circuit and by burnable poison in pyrex pins.
Pyrex is glass loaded with boron. It enables to balance
reactivity in the beginning of life.

Cycle 1 and 2 differ by assemblies enrichment and by
their number of burnable poison pins. In this paper, the
cycle 1 data are used and are described in the following. The
core is composed of 193 assemblies with three different
enrichments in U235: 1.6%, 2.4% and 3.1% (Fig. 1). Some
assemblies contain pyrex pins inside guide tubes. The

number of pyrex pins and their positions are shown in
Figure 2. Each association between enrichment and the
number of pyrex pins represents an assembly. So, there are
nine different types of assembly. An assembly owns 289
pins, distributed into a 17 x 17 lattice (Figs. 3 and 4). Each
pin can be a fuel pin or a guide tube. The guide tube can be
empty (filled with water), or can contain pyrex pin, control
rod in AIC (Argent, Indium, Cadmium) or instrumenta-
tion at the center of the lattice. The pin lattice pitch is
1.25984 cm.

3 Calculations scheme of BEAVRS

The used calculation scheme in this paper is a two step
APOLLO2/CRONOS2 scheme. Each assembly is modeled
in 2D in APOLLO2 multi-group code resolving Boltzmann
equation. Input data are nuclear data from JEFF-3.1.1
library [11] and technological data described assembly
geometry and composition from BEAVRS benchmark. A
first energetic condensation is done to 281 energy groups
corresponding to the SHEM mesh [12]. It is the optimized
mesh for self-shielding which is performed with Pij method.
Then, a condensation to 49 energy groups is done to improve
time calculation while maintaining a good accuracy. The flux
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Fig. 2. Number and positions of pyrex pin at cycle 1.
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Fig. 3. Assembly without pyrex pin.

is calculated with a MOC method. Finally, self-shielding
cross sections are condensed to 4 energy groups and are
stored. Equivalent coefficients transport/diffusion allow-
ing to preserve reactions rates between the two codes
are also calculated. The second step of this calculation
scheme is at core scale using CRONOS2 3D code. It uses
stored cross sections computed for each assembly by
APOLLO2 and it solves flux calculation in diffusion theory
with 4 energy groups thanks to MINOS solver. Then, the
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Fig. 4. Assembly with 16 pyrex pin.

CRONOS2 procedure developed for reactivity sensitivities
calculation can be called. The sensitivity of parameter k to
cross section o in the energy group ¢ is given by:

<‘P+, (A - %)o’g(p>
(¢, Fo)

In this equation, ¢ is the adjoint flux, F is the neutron
production operator and A is the disappearance operator.
In CRONOS2, the flux and the adjoint flux are calculated
resolving diffusion equation but cross sections used in
sensitivity equation are those which come from transport
equation. Firstly, adjoint flux is calculated. Secondly, the
procedure creates CRONOS2 structures which contain
macroscopic cross sections of selected isotopes by reaction.
These structures allow calculating production and dis-
appearances operator for each isotope. Consequently, the
scalar product with adjoint flux on phases space can be
calculated and this enables to have production term. In
addition, expression of sensitivity can be implemented and
have to be breakdown by isotope, by reaction and by
energy group. The split by energy group is made thanks to
unitary sources which are equal to 1 in the wanted energy
group and 0 in the other groups. Finally, the scalar product
can be calculated and also the sensitivity on the reactivity
for different isotopes and reactions. The low number of
energy groups and the rough spatial mesh used in
CRONOS2 code allow computing quickly sensitivities.

S(k,o9) = =

4 Generation of four groups covariances
matrix

Four groups matrix have been created from condensation
of 49 groups COMAC matrix. Condensation method relies
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Table 1. CRONOS2 sensitivities compared to IFP sensitivities coming from RMC code [8].

Isotope Reaction CRONOS2 IFP (RMC) Difference IFP
(pem/%) (pem/%) [8] (RMC)-CRONOS2 (%)

U234 Capture —1.42 —1.50 —5.33
U234 Fission 0.04 0.04 0.00
U234 Neutron multiplicity 0.07 0.07 0.00
U235 Capture —97.26 —99.60 —-2.35
U235 Fission 460.09 441.00 4.33
U235 Neutron multiplicity 931.92 927.00 0.53
U238 Capture —259.32 —217.00 19.50
U238 Fission 44.15 46.10 —4.23
U238 Neutron multiplicity 68.64 72.90 —5.84
B10 Capture —163.91 —153.00 7.13
Zr90 Capture —-0.94 —1.78 —47.19
Zr91 Capture —6.63 —5.06 31.03
Zr92 Capture —-1.95 —1.82 7.14
Zr94 Capture —-0.70 —0.64 9.37
Zr96 Capture —0.87 —0.67 29.85
Sn112 Capture —0.02 —0.02 0.00
Snl15 Capture —0.03 —0.06 —50.00
Snl16 Capture -0.13 —-0.13 0.00
Snl17 Capture -0.14 —0.12 16.67
Sn118 Capture —-0.11 —0.09 22.22
Snl19 Capture —0.09 —0.09 0.00
Sn120 Capture —0.04 —-0.04 0.00
Snl24 Capture —0.03 —0.03 0.00
H20 Capture —65.80 —64.50 2.02
on the conservation of variance for a given isotope and for I

each group of four groups mesh. Variances are calculated
by the following equation:

V =S"MS.

In this formulation, M is the covariances matrix coming
from database COMAC with 49 energy groups and Sis the
vector of reactivity sensitivities to cross sections calculated
at 49 energy groups by APOLLO?2 on an assembly. So, the
rate variance q for a given isotope is:

Vo= 8"M,S,.
And covariance between rates a and b is:
Vap = S MySy.

The variance of total rate for an isotope and which is
conserved in this method is:

V=V,+V,+2Vy.
In this case, uncertainties IJ and IJ in the group

g and correlations ’/’Z{ between cross sections o7 and oy
are given by:

VL
I‘Zb = \/V>g’

99’

g _ Vab
ab /o
g 79
IUQI%

5 Results on reactivity sensitivities for
modeled 3D BEAVRS core

The developed method in CRONOS2 code for the computa-
tion of sensitivities on reactivity due to nuclear data with four
energy groups in diffusion theory has been tested on
BEAVRS benchmark. The used configuration of the core
is a critical configuration with all control rods output (ARO)
with 975ppm of boron at HZP conditions. Reactivity
sensitivity calculations on reactivity in CRONOS2 code
have been compared to IFP reference calculations coming
from RMC code [8] shown in Table 1 for each isotope and
each reaction. Sentivities to scattering cross sections are
not available for the moment in the CRONOS2 code and
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Table 2. CRONOS2 sensitivities compared to IFP sensitivities coming from TRIPOLI4 code [6].

Isotope Reaction CRONOS2 (pcm/%) IFP (T4) (pem/%) [6] Difference IFP
(T4)-CRONOS2 (%)

U234 Capture + Fission —1.38 —1.46 £1.97E—03 —5.48

U235 Capture + Fission 362.82 336.00 £ 1.58E—-01 7.98

U238 Capture + Fission —215.80 —174.00 £ 6.12E—02 24.02

B10 Capture —163.91 —157.00 + 5.05E—-02 4.40

Table 3. Uncertainty on reactivity due to nuclear data
with CRONOS?2 sensitivities at 4 energy groups.

Isotope Capture Fission Total (pcm)
U235 133.69 152.47 202.78
U238 264.90 357.30 444.79
B10 76.66 0.00 76.66
Zr90 10.30 0.00 10.30
7191 41.75 0.00 41.75
Zr92 35.34 0.00 35.34
7194 2.72 0.00 2.72
Zr96 6.95 0.00 6.95
H20 188.00 0.00 188.00
Total (pcm) 363.89 388.47 532.29

they are not shown in this paper. IFP method has been
developed for continuous energy Monte Carlo code to
calculate adjoint flux by counting the expected fission
neutrons produced in some future time after a neutron is
introduced into the system. On the other hand, IFP
calculations has also been done with Monte Carlo code
TRIPOLI4 for the most sensitive isotopes. Comparison
between CRONOS sensitivities and TRIPOLI4 IFP are in
Table 2. The differences between these two calculation
methods are small for the most sensitive isotopes (U235,
U238, H20 and B10) but is nearly of 20% for capture of
U238. This gap is explained by employed calculation
scheme and particularly by self-shielding which has an
impact on the pertinence of sensitivities. Differences can
be more important for less sensitive isotopes such as Zr90,
7Zr91, Zr96, Sn115, Sn117 and Snl118. Their sensitivities
are so weak that these differences will not have
consequence on uncertainties calculations. Finally, sensi-
tivities calculations by SPT in CRONOS2 code is
validated. In addition, sensitivities calculations with
CRONOS2 is compatible with industrial constaints. In
fact, calculation time is nearly 1h to obtain all these
sensitivites for only one CRONOS2 calculation.

6 Reactivity uncertainty due to nuclear data
of BEAVRS benchmark

CRONOS?2 sensitivities calculated in Section 5 are
combined with four energy groups covariance matrix to
estimate uncertainty on reactivity due to nuclear data
according to the following equation:

e(k,0) = VS'MS.

In this equation, S is the sensitivities vector containing
sensitivity of parameter k to cross section o in each energy
group. And M is the corresponding covariances matrix.
These matrix result from condensation of COMAC matrix
at 49 energy groups (COMAC V1.0) [13-15]. Condensation
method relies on the preservation of total variance for a
given isotope. For this, sensitivities are calculated with
APOLLO2 code with 49 energy groups and coupled with
covariance matrix. Results by isotope and reaction are
given in Table 3. The total uncertainty on reactivity is
532 pcm for ARO configuration. It value is close to that
calculated in references [16,17]. The greatest contributor to
uncertainty is U238 which represents nearly 50% of the
uncertainty on the reactivity.

7 Conclusion

This paper proposed a calculation method for reactivity
sensitivities due to nuclear data at industrial scale for a 3D
modeled core. Unlike Monte Carlo methods which are
expensive and time-consuming, the developed CRONOS2
procedure takes advantage of using a short calculation
time. It is based on SPT. Consequently, it is able to
calculate sensitivities for all interest isotopes and for all
reactions (except scattering reaction) and energy group
with a short time calculation (nearly 1h). CRONOS2
procedure has been validated comparing calculated
sensitivities to IFP results. Differences between these
two calculations methods are small, especially for the most
sensitive isotopes such as U235, U238 and B10 but capture
of U238 presents a gap of nearly 20%. To reduce this gap,
this development requires to be tested with other
calculation scheme to study the impact of self-shielding
choice or the creation of equivalent coefficients which
would preserve reaction rate coupled with adjoint flux
These sensitivities have enabled to estimate uncertainty on
reactivity due to nuclear data for the BEAVRS benchmark
in ARO configuration. This uncertainty agrees with
uncertainty calculated by other authors. To summarize
this work, this study shows the capacity of CRONOS2 code
to compute sensitivities and uncertainties in diffusion with
only 4 energy groups. For the user, sensitivities calculation
comes down to a simple procedure to obtain all reactivity
sensitivities with only one calculation. For the qualifica-
tion, this development enables to have quickly an
estimation of reactivity uncertainties. Other configurations



6 J. Gaillet et al.: EPJ Nuclear Sci. Technol. 4, 45 (2018)

of BEAVRS core can be studied such as those which have
control rods but they are more difficult to model.
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