, These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, CCDC 1944962?1944975 contain the supplementary crystallographic data for this paper

*. ,

*. ,

. Orcid-pierre-thuéry, , pp.0-0003

Y. Atoini, , pp.0-0003

J. Harrowfield, , pp.0-0003

K. X. Wang and J. Chen, Extended Structures and Physicochemical Properties of UranylOrganic Compounds, Acc. Chem. Res, vol.44, pp.531-540, 2011.

M. B. Andrews and C. L. Cahill, Uranyl Bearing Hybrid Materials: Synthesis, Speciation, and Solid-State Structures, Chem. Rev, vol.113, pp.1121-1136, 2013.

T. Loiseau, I. Mihalcea, N. Henry, and C. Volkringer, The Crystal Chemistry of Uranium Carboxylates, Coord. Chem. Rev, pp.69-109, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01780303

J. Su and J. S. Chen, MOFs of Uranium and the Actinides, Struct. Bond, vol.163, pp.265-296, 2015.

P. Thuéry and J. Harrowfield, Recent Advances in Structural Studies of Heterometallic UranylContaining Coordination Polymers and Polynuclear Closed Species, Dalton Trans, vol.46, pp.13660-13667, 2017.

P. C. Burns, U 6+ Minerals and Inorganic Compounds: Insights into an Expanded Structural Hierarchy of Crystal Structures. Can Mineral, vol.43, pp.1839-1894, 2005.

B. F. Mentzen, J. P. Puaux, and H. Sautereau, The Crystal Structure of Diammonium Uranyl Tetraformate: (NH4)2UO2(HCOO)4, Acta Crystallogr., Sect. B, vol.34, pp.1846-1849, 1978.

P. Thuéry, Uranyl Ion Complexes of Cucurbit[7]uril with Zero-, One-, and TwoDimensionality, CrystEngComm, vol.11, pp.1150-1156, 2009.

P. Thuéry, Y. Atoini, and J. Harrowfield, Chiral Discrete and Polymeric Uranyl Ion Complexes with (1R,3S)-(+)-Camphorate Ligands: Counterion-Dependent Formation of a Hexanuclear Cage, Inorg. Chem, vol.58, pp.870-880, 2019.

I. Fankuchen, Crystal Structure of Sodium Uranyl Acetate, Z. Kristallogr, vol.91, pp.473-479, 1935.

W. H. Zachariasen and H. A. Plettinger, Crystal Chemical Studies of the 5f-Series of Elements

. Xxv, The Crystal Structure of Sodium Uranyl Acetate, Acta Cryst, vol.12, pp.526-530, 1959.

V. V. Klepov, L. B. Serezhkina, V. N. Serezhkin, and E. V. Alekseev, Synthesis and Crystal Structure Analysis of Uranyl Triple Acetates, J. Solid State Chem, vol.244, pp.100-107, 2016.

P. Thuéry, Y. Atoini, and J. Harrowfield, Uranyl-Organic Coordination Polymers with trans-1,2-, trans-1,4-, and cis-1,4-Cyclohexanedicarboxylates: Effects of Bulky PPh4 + and PPh3Me + Counterions, Cryst. Growth Des, vol.18, pp.2609-2619, 2018.

P. Thuéry, Y. Atoini, and J. Harrowfield, Counterion-Controlled Formation of an Octanuclear Uranyl Cage with cis-1,2-Cyclohexanedicarboxylate Ligands, Inorg. Chem, vol.57, pp.6283-6288, 2018.

P. Thuéry, Y. Atoini, and J. Harrowfield, Closed Uranyl-Dicarboxylate Oligomers: A Tetranuclear Metallatricycle with Uranyl Bridgeheads and 1,3-Adamantanediacetate Linkers, Inorg. Chem, vol.57, pp.7932-7939, 2018.

P. Thuéry, Y. Atoini, and J. Harrowfield, Tubelike Uranyl-Phenylenediacetate Assemblies from Screening of Ligand Isomers and Structure-Directing Counterions, Inorg. Chem, vol.58, pp.6550-6564, 2019.

P. Thuéry and J. Harrowfield,

, Counterions In Uranyl-Organic Species with cis-and trans-1,2-Cyclohexanedicarboxylate Ligands, Cryst. Growth Des, vol.18, pp.5512-5520, 2018.

P. Thuéry, Y. Atoini, and J. Harrowfield, Structure-Directing Effects of Counterions in Uranyl Ion Complexes with Long-Chain Aliphatic ???-Dicarboxylates: 1D to Polycatenated 3D Species, Inorg. Chem, vol.58, pp.567-580, 2019.

R. W. Hooft, . Collect, and B. V. Nonius, , 1998.

Z. Otwinowski and W. Minor, Processing of X-Ray Diffraction Data Collected in Oscillation Mode, Methods Enzymol, vol.276, pp.307-326, 1997.

G. M. Sheldrick, SHELXT -Integrated Space-Group and Crystal-Structure Determination, Acta Crystallogr., Sect. A, vol.71, pp.3-8, 2015.

G. M. Sheldrick, Crystal Structure Refinement with SHELXL, Acta Crystallogr., Sect. C, vol.71, pp.3-8, 2015.

C. B. Hübschle, G. M. Sheldrick, and B. Dittrich, ShelXle: a Qt Graphical User Interface for SHELXL, J. Appl. Crystallogr, vol.44, pp.1281-1284, 2011.

L. J. Farrugia, WinGX and ORTEP for Windows: an Update, J. Appl. Crystallogr, vol.45, pp.849-854, 2012.

K. Momma and F. Izumi, VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data, J. Appl. Crystallogr, vol.44, pp.1272-1276, 2011.

V. A. Blatov, Nanocluster Analysis of Intermetallic Structures with the Program Package TOPOS, Struct. Chem, vol.23, pp.955-963, 2012.

P. Thuéry and J. Harrowfield, Anchoring Flexible Uranyl Dicarboxylate Chains through Stacking Interactions of Ancillary Ligands on Chiral U(VI) Centres, CrystEngComm, vol.18, pp.3905-3918, 2016.

A. L. Spek, Structure Validation in Chemical Crystallography, Acta Crystallogr, vol.65, pp.148-155, 2009.

M. A. Spackman and D. Jayatilaka, Hirshfeld Surface Analysis, CrystEngComm, vol.11, pp.19-32, 2009.

S. K. Wolff, D. J. Grimwood, J. J. Mckinnon, M. J. Turner, D. Jayatilaka et al., , 2012.

R. Taylor and O. Kennard, Crystallographic Evidence for the Existence of C-H???O, C-H???N, and C-H???Cl Hydrogen Bonds, J. Am. Chem. Soc, vol.104, pp.5063-5070, 1982.

G. R. Desiraju, C. The, and . Bond, Structural Implications and Supramolecular Design, vol.29, pp.441-449, 1996.

P. Y. Zavalij, B. L. Burton, W. E. Jones, and . Jr, New Structures in the Bipyridine-Copper(II) Nitrate-Methanol System, Acta Crystallogr, vol.58, pp.330-333, 2002.

G. Beobide, O. Castillo, U. García-couceiro, J. P. García-terán, and A. Luque, Bis(2,2?-bipyridine-? 2 N,N?)(nitrato-?O)copper(II) Hexafluorophosphate, Acta Crystallogr., Sect. E, vol.62, pp.1353-1355, 2006.

Y. Zhu, Y. L. Wu, C. X. Huang, J. M. Xie, and . Bis,

. Perchlorate, Acta Crystallogr., Sect. E, vol.67, p.306, 2011.

P. Thuéry and J. Harrowfield, Modulation of the Structure and Properties of Uranyl Ion Coordination Polymers Derived from 1,3,5-Benzenetriacetate by Incorporation of Ag(I) or

, Pb(II), Inorg. Chem, vol.55, pp.6799-6816, 2016.

P. Thuéry and J. Harrowfield, Variations on the Honeycomb Topology: From Triangular-and Square-Grooved Networks to Tubular Assemblies in Uranyl Tricarballylate Complexes, Cryst. Growth Des, vol.17, pp.963-966, 2017.

P. Thuéry and J. Harrowfield, Ag I and Pb II as Additional Assembling Cations in Uranyl Coordination Polymers and Frameworks, Cryst. Growth Des, vol.17, pp.2116-2130, 2017.

P. Thuéry and J. Harrowfield, Structural Consequences of 1,4-Cyclohexanedicarboxylate Cis/Trans Isomerism in Uranyl Ion Complexes: From Molecular Species to 2D and 3D Entangled Nets, Inorg. Chem, vol.56, pp.13464-13481, 2017.

P. Thuéry and J. Harrowfield, Tetrahydrofurantetracarboxylic Acid: An Isomerizable Framework-Forming Ligand in Homo-and Heterometallic Complexes with UO2 2+ , Ag + and Pb 2+, Cryst. Growth Des, vol.16, pp.7083-7093, 2016.

N. L. Bell, P. L. Arnold, and J. B. Love, Controlling Uranyl Oxo Group Interactions to Group 14

, Elements Using Polypyrrolic Schiff-Base Macrocyclic Ligands, Dalton Trans, vol.45, pp.15902-15909, 2016.

P. T. Moseley, Aspects of the Structural Chemistry of Lanthanide and Actinide Compounds, In Inorganic Chemistry, Series Two, vol.7, pp.65-110, 1975.

L. Shimoni-livny, J. P. Glusker, and C. W. Bock, Lone Pair Functionality in Divalent Lead Compounds, Inorg. Chem, vol.37, pp.1853-1867, 1998.

P. Thuéry, Y. Atoini, and J. Harrowfield, The Sulfonate Group as a Ligand: a Fine Balance between Hydrogen Bonding and Metal Ion Coordination in Uranyl Ion Complexes, Dalton Trans, vol.48, pp.8756-8772, 2019.

P. Thuéry and J. Harrowfield, Uranyl Ion Complexes with Long-Chain Aliphatic ?,?-Dicarboxylates and 3d-Block Metal Counterions, Inorg. Chem, vol.55, pp.2133-2145, 2016.

P. Thuéry and J. Harrowfield, Coordination Polymers and Cage-Containing Frameworks in Uranyl Ion Complexes with rac-and (1R,2R)-trans-1,2-Cyclohexanedicarboxylates: Consequences of Chirality, Inorg. Chem, vol.56, pp.1455-1469, 2017.

P. Thuéry and J. Harrowfield, Tetrahedral and Cuboidal Clusters in Complexes of Uranyl and Alkali or Alkaline-Earth Metal Ions with racand

. Cyclohexanedicarboxylate and . Cryst, Growth Des, vol.17, pp.2881-2892, 2017.

D. L. Caulder and K. N. Raymond, Supermolecules by Design, Acc.Chem. Res, vol.32, pp.975-982, 1999.

H. D. Burrows, S. J. Formosinho, M. Miguel, and F. Da-g.;-pinto-coelho, Quenching of the Luminescent State of the Uranyl Ion (UO2 2+ ) by Metal Ions. Evidence for an Electron Transfer Mechanism, J. Chem. Soc., Faraday Trans. 1, vol.72, pp.163-171, 1976.

A. T. Kerr and C. L. Cahill, Postsynthetic Rearrangement/Metalation as a Route to Bimetallic Uranyl Coordination Polymers: Syntheses, Structures, and Luminescence, Cryst. Growth Des, vol.14, 1914.

A. T. Kerr and C. L. Cahill, CuPYDC Metalloligands and Postsynthetic Rearrangement/Metalation as Routes to Bimetallic Uranyl Containing Hybrid Materials: Syntheses, Structures, and Fluorescence, Cryst. Growth Des, vol.14, pp.4094-4103, 2014.

J. A. Ridenour, M. M. Pyrch, Z. J. Manning, J. A. Bertke, and C. L. Cahill, Two Novel Bimetallic Transition Metal-Uranyl One-Dimensional Coordination Polymers with

, Acta Crystallogr, vol.73, pp.588-592, 2017.

A. T. Kerr, J. A. Ridenour, A. A. Noring, and C. L. Cahill, Two Uranyl-Copper(II) Bimetallic Coordination Polymers Containing trans-3,3(pyridyl)acrylic acid: Structural Variance Through Synthetic Subtleties, Inorg. Chim. Acta, vol.494, pp.204-210, 2019.

G. E. Gomez, J. A. Ridenour, N. M. Byrne, A. P. Shevchenko, and C. L. Cahill, Novel Heterometallic Uranyl-Transition Metal Materials: Structure, Topology, and Solid State Photoluminescence Properties, Inorg. Chem, vol.58, pp.7243-7254, 2019.

A. Brachmann, G. Geipel, G. Bernhard, and H. Nitsche, Study of Uranyl(VI) Malonate Complexation by Time Resolved Laser-Induced Fluorescence Spectroscopy (TRLFS)

, Radiochim. Acta, vol.90, pp.147-153, 2002.

, -Phenylenediacetate Complexes of Uranyl Ion with Additional Metal Cations and/or Ancillary N-Donor Ligands: Confronting Ligand Geometrical Proclivities Pierre Thuéry, Youssef Atoini and Jack Harrowfield The 1,2-1,3-and 1,4-phenylenediacetate ligands have a strong propensity to give 1D uranyl ion complexes, a tendency which can only be partially overcome through the incorporation of additional metal cations, vol.1