L. Chateigner, G. Sanchez, V. Charmet, P. Allard, L. Martre et al., Bouchet for useful discussions and comments on the manuscript. We are grateful to the Genotoul bioinformatics platform Toulouse Midi-Pyrenees (Bioinfo Genotoul) for providing computing resources. Establishment and management of the poplar experimental sites until harvests were carried out with financial support from the NOVELTREE project (EU-FP7-211868). NIRS measurements on poplar wood samples were supported by the SYBIOPOP project funded by the French National Research Agency (ANR-13-JSV6-0001). Management of the wheat multi-environment trials was financially supported by the French National Research National Agency under Investment for the Future (BreedWheat project ANR-10-BTBR-03) and by FranceAgriMer. The Phéno3C platform was financially funded by the French National, EPGV and BioForA for their contribution to obtaining SNP data on poplar. We would like to thank J. Messaoud for NIRS acquisition on wheat samples

V. S. , R. R. ;-j-p, P. F. .r, E. P. , J. L. et al., designed the study, analyzed the data and wrote the paper with input from

M. Abasolo, D. J. Lee, C. Raymond, R. Meder, and M. Shepherd, Deviant near-infrared spectra identifies Corymbia hybrids, For. Ecol. Manage, vol.304, pp.121-131, 2013.

O. E. Adedipe, B. Dawson-andoh, J. Slahor, and L. Osborn, Classification of red oak (Quercus rubra) and white oak (Quercus alba) wood using a near infrared spectrometer and soft independent modelling of class analogies, J. Near Infrared Spectrosc, vol.16, pp.49-57, 2008.

F. M. Aguate, S. Trachsel, L. G. Pérez, J. Burgueño, and J. Crossa, Use of Hyperspectral Image Data Outperforms Vegetation Indices in Prediction of Maize Yield, Crop Sci, vol.57, p.2517, 2017.

D. Bertrand, P. Robert, and W. Loisel, Identification of some wheat varieties by near infrared reflectance spectroscopy, J. Sci. Food Agric, vol.36, pp.1120-1124, 1985.

L. Cabrera-bosquet, J. Crossa, J. Zitzewitz, M. D. Serret, and J. Luis-araus, High-throughput Phenotyping and Genomic Selection: The Frontiers of Crop Breeding ConvergeF, J. Integr. Plant Biol, vol.54, pp.312-320, 2012.

G. Covarrubias-pazaran, Genome-Assisted Prediction of Quantitative Traits Using the R Package sommer, PLoS One, vol.11, 2016.

J. Crossa, D. Jarquín, J. Franco, P. Pérez-rodríguez, and J. Burgueño, Genomic Prediction of Gene Bank Wheat Landraces, Genes|Genomes|Genetics (Bethesda), vol.3, pp.1819-1834, 2016.

R. H. Cruickshank and L. Munck, It's barcoding Jim, but not as we know it, Zootaxa, vol.56, pp.55-56, 2011.

G. De-los-campos, J. M. Hickey, R. Pong-wong, H. D. Daetwyler, and M. P. Calus, Whole-Genome Regression and Prediction Methods Applied to Plant and Animal Breeding, Genetics, vol.193, pp.327-345, 2013.

G. De-los-campos, H. Naya, D. Gianola, J. Crossa, and A. Legarra, Predicting Quantitative Traits With Regression Models for Dense Molecular Markers and Pedigree, Genetics, vol.182, pp.375-385, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00606555

M. P. Diago, A. M. Fernandes, B. Millan, J. Tardaguila, and P. Melo-pinto, Identification of grapevine varieties using leaf spectroscopy and partial least squares, Comput. Electron. Agric, vol.99, pp.7-13, 2013.

D. Diepeveen, G. P. Clarke, K. Ryan, A. Tarr, and W. Ma, Molecular genetic mapping of NIR spectra variation, J. Cereal Sci, vol.55, pp.6-14, 2012.

S. Y. Dillen, N. Marron, M. Sabatti, R. Ceulemans, and C. Bastien, Relationships among productivity determinants in two hybrid poplar families grown during three years at two contrasting sites, Tree Physiol, vol.29, pp.975-987, 2009.

M. Ecarnot, F. Compan, and P. Roumet, Assessing leaf nitrogen content and leaf mass per unit area of wheat in the field throughout plant cycle with a portable spectrometer, Field Crops Res, vol.140, pp.44-50, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00939607

R. J. Elshire, J. C. Glaubitz, Q. Sun, J. A. Poland, and K. Kawamoto, A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species, PLoS One, vol.6, p.19379, 2011.

J. B. Endelman, Ridge Regression and Other Kernels for Genomic Selection with R Package rrBLUP, The Plant Genome Journal, vol.4, p.250, 2011.

J. A. Espinoza, G. R. Hodge, and W. S. Dvorak, The potential use of near infrared spectroscopy to discriminate between different pine species and their hybrids, J. Near Infrared Spectrosc, vol.20, pp.437-447, 2012.

P. Faivre-rampant, G. Zaina, V. Jorge, S. Giacomello, and V. Segura, New resources for genetic studies in Populus nigra: genome-wide SNP discovery and development of a 12k Infinium array, Mol. Ecol. Resour, vol.16, pp.1023-1036, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02636258

K. Feher, J. Lisec, L. Römisch-margl, J. Selbig, and A. , Deducing Hybrid Performance from Parental Metabolic Profiles of Young Primary Roots of Maize by Using a Multivariate Diallel Approach, PLoS One, vol.9, 2014.

O. Fernandez, M. Urrutia, S. Bernillon, C. Giauffret, and F. Tardieu, Fortune telling: metabolic markers of plant performance, Metabolomics, vol.12, p.158, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02637624

J. Ferrio, D. Villegas, J. Zarco, N. Aparicio, and J. Araus, Assessment of durum wheat yield using visible and near-infrared reflectance spectra of canopies, Field Crops Res, vol.94, pp.126-148, 2005.

S. Fischnaller, F. E. Dowell, A. Lusser, B. C. Schlick-steiner, and F. M. Steiner, Non-destructive species identification of Drosophila obscura and D. subobscura (Diptera) using near-infrared spectroscopy, Fly (Austin), vol.6, pp.284-289, 2012.

W. J. Foley, A. Mcilwee, I. Lawler, L. Aragones, and A. P. Woolnough, Ecological applications of near infrared reflectance spectroscopya tool for rapid, cost-effective prediction of the composition of plant and animal tissues and aspects of animal performance, Oecologia, vol.116, pp.293-305, 1998.

S. Forni, I. Aguilar, and I. Misztal, Different genomic relationship matrices for single-step analysis using phenotypic, pedigree and genomic information, Genet. Sel. Evol, vol.43, issue.1, 2011.

J. Fu, K. C. Falke, A. Thiemann, T. A. Schrag, and A. E. Melchinger, Partial least squares regression, support vector machine regression, and transcriptome-based distances for prediction of maize hybrid performance with gene expression data, Theor. Appl. Genet, vol.124, pp.825-833, 2012.

R. C. Gaynor, G. Gorjanc, A. R. Bentley, E. S. Ober, and P. Howell, A Two-Part Strategy for Using Genomic Selection to Develop Inbred Lines, Crop Sci, vol.57, p.2372, 2017.

M. N. Gebreselassie, K. Ader, N. Boizot, F. Millier, and J. P. Charpentier, Near-infrared spectroscopy enables the genetic analysis of chemical properties in a large set of wood samples from Populus nigra (L.) natural populations, Ind. Crops Prod, vol.107, pp.159-171, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01608814

A. Genz, F. Bretz, T. Miwa, X. Mi, and F. Leisch, mvtnorm: Multivariate Normal and t Distributions, 2018.

M. Goddard, Genomic selection: Prediction of accuracy and maximisation of long term response, Genetica, vol.136, pp.245-257, 2009.

G. Gorjanc, M. Battagin, J. Dumasy, R. Antolin, and R. C. Gaynor, Prospects for Cost-Effective Genomic Selection via Accurate Within-Family Imputation, Crop Sci, vol.57, p.216, 2017.

G. Gorjanc, J. Dumasy, S. Gonen, R. C. Gaynor, and R. Antolin, Potential of Low-Coverage Genotyping-by-Sequencing and Imputation for Cost-Effective Genomic Selection in Biparental Segregating Populations, Crop Sci, vol.57, p.1404, 2017.

G. Gorjanc, J. Jenko, S. J. Hearne, and J. M. Hickey, Initiating maize pre-breeding programs using genomic selection to harness polygenic variation from landrace populations, BMC Genomics, vol.17, p.30, 2016.

J. Guet, F. Fabbrini, R. Fichot, M. Sabatti, and C. Bastien, Genetic variation for leaf morphology, leaf structure and leaf carbon isotope discrimination in European populations of black poplar (Populus nigra L.), Tree Physiol, vol.35, pp.850-863, 2015.

Z. Guo, M. M. Magwire, C. J. Basten, Z. Xu, and D. Wang, Evaluation of the utility of gene expression and metabolic information for genomic prediction in maize, Theor. Appl. Genet, vol.129, pp.2413-2427, 2016.

D. Habier, R. L. Fernando, and J. C. Dekkers, The impact of genetic relationship information on genome-assisted breeding values, Genetics, vol.177, pp.2389-2397, 2007.

B. Hayes, P. M. Visscher, and M. Goddard, Increased accuracy of artificial selection by using the realized relationship matrix, Genet. Res, vol.91, p.47, 2009.

E. L. Heffner, A. J. Lorenz, J. Jannink, and M. E. Sorrells, Plant Breeding with Genomic Selection: Gain per Unit Time and Cost, Crop Sci, vol.50, p.1681, 2010.

P. R. Hein and G. Chaix, NIR Spectral Heritability: A Promising Tool for Wood Breeders?, J. Near Infrared Spectrosc, vol.22, pp.141-147, 2014.

H. M. Kang, J. H. Sul, S. K. Service, N. A. Zaitlen, and S. Kong, Variance component model to account for sample structure in genome-wide association studies, Nat. Genet, vol.42, pp.348-354, 2010.

A. Korte, B. J. Vilhjálmsson, V. Segura, A. Platt, and Q. Long, A mixed-model approach for genome-wide association studies of correlated traits in structured populations, Nat. Genet, vol.44, pp.1066-1071, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01267803

C. Lang, D. R. Almeida, and F. R. Costa, Discrimination of taxonomic identity at species, genus and family levels using Fourier Transformed Near-Infrared Spectroscopy (FT-NIR), For. Ecol. Manage, vol.406, pp.219-227, 2017.

A. Legarra, I. Aguilar, and I. Misztal, A relationship matrix including full pedigree and genomic information, J. Dairy Sci, vol.92, pp.4656-4663, 2009.

D. Ly, S. Huet, A. Gauffreteau, R. Rincent, and G. Touzy, Wholegenome prediction of reaction norms to environmental stress in bread wheat (Triticum aestivum L.) by genomic random regression, Field Crops Res, vol.216, pp.32-41, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02626053

T. F. Mackay, E. A. Stone, and J. F. Ayroles, The genetics of quantitative traits: challenges and prospects, Nat. Rev. Genet, vol.10, pp.565-577, 2009.

S. Madec, F. Baret, B. De-solan, S. Thomas, and D. Dutartre, High-Throughput Phenotyping of Plant Height: Comparing Unmanned Aerial Vehicles and Ground LiDAR Estimates, Front. Plant Sci, vol.8, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01655402

R. Meder, D. Kain, N. Ebdon, P. Macdonell, and J. T. Brawner, Identifying hybridisation in Pinus species using near infrared spectroscopy of foliage, J. Near Infrared Spectrosc, vol.22, pp.337-345, 2014.

T. Meuwissen, B. Hayes, and M. Goddard, Accelerating Improvement of Livestock with Genomic Selection, Annu. Rev. Anim. Biosci, vol.1, pp.221-237, 2013.

T. H. Meuwissen, B. J. Hayes, and M. E. Goddard, Prediction of total genetic value using genome-wide dense marker maps, Genetics, vol.157, pp.1819-1829, 2001.

F. Muñoz and L. Sanchez, breedR: Statistical Methods for Forest Genetic Resources Analysts. R package version 0, pp.12-14, 2017.

H. Oakey, A. P. Verbyla, B. R. Cullis, X. Wei, and W. S. Pitchford, Joint modeling of additive and non-additive (genetic line) effects in multi-environment trials, Theor. Appl. Genet, vol.114, pp.1319-1332, 2007.

J. M. O'reilly-wapstra, J. S. Freeman, R. Barbour, R. E. Vaillancourt, and B. M. Potts, Genetic analysis of the near-infrared spectral phenome of a global Eucalyptus species, Tree Genet. Genomes, vol.9, pp.943-959, 2013.

T. Park and G. Casella, The Bayesian Lasso, J. Am. Stat. Assoc, vol.103, pp.681-686, 2008.

K. Y. Peerbhay, O. Mutanga, and R. Ismail, Commercial tree species discrimination using airborne AISA Eagle hyperspectral imagery and partial least squares discriminant analysis (PLS-DA, ISPRS J. Photogramm. Remote Sens, vol.79, pp.19-28, 2013.

H. Posada, M. Ferrand, F. Davrieux, P. Lashermes, and B. Bertrand, Stability across environments of the coffee variety near infrared spectral signature, Heredity, vol.102, pp.113-119, 2009.

. R-core-team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, 2018.

C. Riedelsheimer, A. Czedik-eysenberg, C. Grieder, J. Lisec, and F. Technow, Genomic and metabolic prediction of complex heterotic traits in hybrid maize, Nat. Genet, vol.44, pp.217-220, 2012.

H. Rimbert, B. Darrier, J. Navarro, J. Kitt, and F. Choulet, High throughput SNP discovery and genotyping in hexaploid wheat, PLoS One, vol.13, p.186329, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02628543

M. X. Rodríguez-Álvarez, M. P. Boer, F. A. Van-eeuwijk, and P. H. Eilers, Correcting for spatial heterogeneity in plant breeding experiments with p-splines, Spat. Stat, vol.23, pp.52-71, 2017.

A. Rohde, V. Storme, V. Jorge, M. Gaudet, and N. Vitacolonna, Bud set in poplar -genetic dissection of a complex trait in natural and hybrid populations, New Phytol, vol.189, pp.106-121, 2011.

M. Sargolzaei, J. P. Chesnais, and F. S. Schenkel, A new approach for efficient genotype imputation using information from relatives, BMC Genomics, vol.15, p.478, 2014.

A. Savitzky and M. J. Golay, Smoothing and Differentiation of Data by Simplified Least Squares Procedures, Anal. Chem, vol.36, pp.1627-1639, 1964.

T. A. Schrag, M. Westhues, W. Schipprack, F. Seifert, and A. Thiemann, Beyond Genomic Prediction: Combining Different Types ofomics-Data Can Improve Prediction of Hybrid Performance in Maize, Genetics, vol.208, 2018.

F. Seifert, A. Thiemann, T. A. Schrag, D. Rybka, and A. E. Melchinger, Small RNA-based prediction of hybrid performance in maize, BMC Genomics, vol.19, p.371, 2014.

C. A. Teixeira-dos-santos, M. Lopo, R. N. Páscoa, and J. A. Lopes, A review on the applications of portable near-infrared spectrometers in the agro-food industry, Appl. Spectrosc, vol.67, pp.1215-1233, 2013.

P. M. Vanraden, Efficient methods to compute genomic predictions, J. Dairy Sci, vol.91, pp.4414-4423, 2008.

J. Ward, M. Rakszegi, Z. Bed}-o, P. R. Shewry, and I. Mackay, Differentially penalized regression to predict agronomic traits from metabolites and markers in wheat, BMC Genet, vol.16, p.19, 2015.

V. Weber, J. Araus, J. Cairns, C. Sanchez, and A. Melchinger, The Concept of Phenomic Selection | 3971 leaves in maize plants grown under different water regimes, Field Crops Res, vol.8, pp.82-90, 2012.

M. Westhues, T. A. Schrag, C. Heuer, G. Thaller, and H. F. Utz, Omics-based hybrid prediction in maize, Theor. Appl. Genet, vol.130, pp.1927-1939, 2017.

J. Whittaker, Marker-assisted selection using ridge regression, Genetical, vol.75, pp.351-367, 2000.

S. Xu, Y. Xu, L. Gong, and Q. Zhang, Metabolomic prediction of yield in hybrid rice, Plant J, vol.88, pp.219-227, 2016.

Y. Yamada, Y. Itoh, and I. Sugimoto, Parametric relationships between genotype x environment interaction and genetic correlation when two environments are involved, Theor. Appl. Genet, vol.76, pp.850-854, 1988.

X. Yu, X. Li, T. Guo, C. Zhu, and Y. Wu, Genomic prediction contributing to a promising global strategy to turbocharge gene banks, Nat. Plants, vol.2, p.16150, 2016.

C. Zenke-philippi, M. Frisch, A. Thiemann, F. Seifert, and T. Schrag, Transcriptome-based prediction of hybrid performance with unbalanced data from a maize breeding programme, Plant Breed, vol.136, pp.331-337, 2017.

S. Zhong, J. C. Dekkers, R. L. Fernando, and J. Jannink, Factors Affecting Accuracy From Genomic Selection in Populations Derived From Multiple Inbred Lines: A Barley Case Study, Genetics, vol.182, pp.355-364, 2009.