R. L. Albin and J. T. Greenamyre, Alternative excitotoxic hypotheses, Neurology, vol.42, pp.733-738, 1992.

M. F. Beal, Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illness, Ann Neurol, vol.31, pp.119-130, 1992.

M. F. Beal, Energetics in the pathogenesis of neurodegenerative disorders, Trends Neurosci, vol.7, pp.298-304, 2000.

M. F. Beal, E. Brouillet, B. Jenkins, R. Ferrante, N. Kowall et al., Neurochemical and histologic characterization of the striatal lesions produced by the mitochondrial toxin 3-nitropropionic acid, J Neurosci, vol.13, pp.4181-4192, 1993.

A. Benchoua, C. Guegan, C. Couriaud, H. Hosseini, N. Sampaio et al., Specific caspase pathways are activated in the two stages of cerebral infarction, J Neurosci, vol.21, pp.7127-7134, 2001.

D. Blum, D. Gall, M. C. Galas, P. Alcantara, K. Bantubungi et al., The adenosine A1 receptor agonist ADAC exerts a neuroprotective effect against the development of striatal lesions and motor impairments in the 3-nitropropionic acid of neurotoxicity, J Neurosci, vol.22, pp.9122-9133, 2002.

E. Brouillet, M. Guyot, V. Mittoux, S. Altairac, F. Condé et al., Partial inhibition of brain succinate dehydrogenase by 3-nitropropionic acid is sufficient to initiate striatal degeneration in Rat, J Neurochem, vol.70, pp.794-805, 1998.

E. Brouillet, F. Condé, M. F. Beal, and P. Hantraye, Replicating Huntington's disease in experimental animals, Prog Neurobiol, vol.59, pp.427-458, 1999.

S. E. Browne, A. C. Bowling, M. Garvey, U. Baik, M. J. Berger et al., Oxidative damage and metabolic dysfunction in Huntington's disease: selective vulnerability of the basal ganglia, Ann Neurol, vol.41, pp.646-653, 1997.

P. Calabresi, P. Gubellini, B. Picconi, D. Centonze, A. Pisani et al., Inhibition of mitochondrial complex II induces a long-term potentiation of NMDA-mediated synaptic excitation in the striatum requiring endogenous dopamine, J Neurosci, vol.21, pp.5110-5120, 2001.

E. Cattaneo, D. Rigamonti, D. Goffredo, C. Zuccato, F. Squitieri et al., Loss of normal huntingtin function: new developments in Huntington's disease research, Trends Neurosci, vol.24, pp.182-188, 2001.

C. Cepeda, M. A. Ariano, C. R. Calvert, J. Flores-hernandez, S. H. Chandler et al., NMDA receptor function in mouse models of Huntington disease, J Neurosci Res, vol.66, pp.525-539, 2001.

S. L. Chan and M. P. Mattson, Caspase and calpain substrates: roles in synaptic plasticity and cell death, J Neurosci Res, vol.58, pp.167-190, 1999.

C. Dautry, F. Vauffrey, E. Brouillet, N. Bizat, F. Condé et al., Early N-acetylaspartate depletion is a marker of neuronal dysfunction in rats and primates chronically treated with the mitochondrial toxin 3-nitropropionic acid, J Cereb Blood Flow Metab, vol.20, pp.789-799, 2000.

M. Difiglia, Excitotoxic injury of the neostriatum: a model for Huntington's disease, Trends Neurosci, vol.13, pp.286-289, 1990.

D. Rosa, G. Odrijin, T. Nixon, R. A. Arancio, and O. , Calpain inhibitors: a treatment for Alzheimer's disease, J Mol Neurosci, vol.19, pp.135-141, 2002.

Y. Du, R. C. Dodel, K. R. Bales, R. Jemmerson, E. Hamilton-byrd et al., Involvement of a caspase-3-like cysteine protease in 1-methyl-4-phenylpyridinium-mediated apoptosis of cultured cerebellar granule neurons, J Neurochem, vol.69, pp.1382-1388, 1997.

W. Duan, G. Zhiong, and M. Mattson, Participation of Par-4 in the degeneration of striatal neurons induced by metabolic compromise with 3-nitropropionic acid, Exp Neurol, vol.165, pp.1-11, 2000.

J. Gafni and L. M. Ellerby, Calpain activation in Huntington's disease, J Neurosci, vol.22, pp.4842-4849, 2002.

M. Garcia, P. Vanhoutte, C. Pages, M. J. Besson, E. Brouillet et al., Activation of the c-Jun-N-terminal kinase/c-Jun module occurs in striatal neurons in response to 3-nitropropionic acid: a comparative in vivo and in vitro analysis, J Neurosci, vol.22, pp.2174-2184, 2002.

J. G. Greene and J. T. Greenamyre, Characterization of the excitotoxic potential of the reversible succinate dehydrogenase inhibitor malonate, J Neurochem, vol.64, pp.430-436, 1995.

J. G. Greene, S. Sheu, R. A. Gross, and J. T. Greenamyre, 3-nitropropionic acid exacerbates N-methyl-D-aspartate toxicity in striatal culture by multiple mechanisms, Neuroscience, vol.84, pp.503-510, 1998.

M. Gu, M. T. Gash, V. M. Mann, F. Javoy-agid, J. M. Cooper et al., Mitochondrial defect in Huntington's disease caudate nucleus, Ann Neurol, vol.39, pp.385-389, 1996.

A. S. Hackam, R. Singaraja, C. L. Wellington, M. Metzler, K. Mccutcheon et al., The influence of huntingtin protein size on nuclear localization and cellular toxicity, J Cell Biol, vol.141, pp.1097-1105, 1998.

P. S. Harper, Huntington's disease, 1991.

A. Hartmann, S. Hunot, P. P. Michel, M. P. Muriel, S. Vyas et al., Caspase-3: a vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson's disease, Proc Natl Acad Sci, vol.97, pp.2875-2880, 2000.

J. Hermel, R. Dirkx, and M. Solimena, Post-translational modifications of ICA512 a receptor tyrosine phosphatase-like protein of secretory granules, Eur J Neurosci, vol.11, pp.2609-2620, 1999.

. Huntington's-disease-collaborative-research and . Group, A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes, Cell, vol.72, pp.971-983, 1993.

B. G. Jenkins, W. J. Koroshetz, M. F. Beal, and R. Rosen, Evidence for an energy metabolic defect in Huntington's Disease using localized proton spectroscopy, Neurology, vol.43, pp.2689-2693, 1993.

B. G. Jenkins, H. D. Rosas, Y. Chen, T. Makabe, R. Myers et al., 1H NMR spectroscopy studies of Huntington's Disease correlation with CAG repeat numbers, Neurology, vol.50, pp.1357-1365, 1998.

G. W. Kim, J. C. Copin, M. Kawase, S. F. Chen, S. Sato et al., Excitotoxicity is required for induction of oxidative stress and apoptosis in mouse striatum by the mitochondrial toxin 3-nitropropionic acid, J Cereb Blood Flow Metab, vol.20, pp.119-129, 2000.

Y. J. Kim, Y. Yi, E. Sapp, Y. Wang, B. Cuiffo et al., Caspase-3-cleaved N-terminal fragments of wild-type and mutant huntingtin are present in normal and Huntington's disease brains associate with membranes and undergo calpain-dependent proteolysis, Proc Natl Acad Sci, vol.98, pp.12784-12789, 2001.

S. Krajewski, M. Krajewska, L. M. Ellerby, K. Welsh, Z. Xie et al., Release of caspase-9 from mitochondria during neuronal apoptosis and cerebral ischemia, Proc Natl Acad Sci, vol.96, pp.5752-5757, 1999.

G. A. Laforet, E. Sapp, K. Chase, C. Mcintyre, F. M. Boyce et al., Changes in cortical and striatal neurons predict behavioral and electrophysiological abnormalities in a transgenic murine model of Huntington's disease, J Neurosci, vol.21, pp.9112-9123, 2001.

M. Lee, Y. T. Kwon, M. Li, J. Peng, R. M. Friedlander et al., Neurotoxicity induces cleavage of p35 to p25 by calpain, Nature, vol.405, pp.360-364, 2000.

M. Leist, C. Volbracht, E. Fava, and P. Nicotera, 1-Methyl-4-phenylpy ridinium induces autocrine excitotoxicity protease activation and neuronal apoptosis, Mol Pharmacol, vol.54, pp.789-801, 1998.

M. C. Mcdonald, H. Mota-filipe, A. Paul, S. Cuzzocrea, M. Adbelrahman et al., Calpain inhibitor I reduces the activation of nuclear factor-kappaB and organ injury/dysfunction in hemorrhagic shock, FASEB, vol.15, pp.171-186, 2001.

V. Mittoux, S. Ouary, C. Monville, F. Lisovoski, T. Poyot et al., Corticostriatopallidal neuroprotection by adenovirus-mediated ciliary neurotrophic factor gene transfer in a rat model of progressive striatal degeneration, J Neurosci, vol.22, pp.4478-4486, 2002.
URL : https://hal.archives-ouvertes.fr/cea-02290628

S. Namura, J. Zhu, K. Fink, M. Endres, A. Srinivasan et al., Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia, J Neurosci, vol.18, pp.3659-3668, 1998.

J. K. Newcomb-fernandez, X. Zhao, B. R. Pike, K. K. Wang, A. Kampfl et al., Concurrent assessment of calpain and caspase-3 activation after oxygen-glucose deprivation in primary septohippocampal cultures, J Cereb Blood Flow Metab, vol.21, pp.1281-1294, 2001.

D. W. Nicholson and N. A. Thornberry, Caspases: killer proteases, Trends Biochem Sci, vol.22, pp.299-306, 1997.

M. Ohgoh, H. Shimizu, H. Ogura, and Y. Nishizawa, Astroglial trophic support and neuronal cell death: Influence of cellular energy level on type of cell death influenced by mitochondrial toxin in cultured rat cortical neurons, J Neurochem, vol.75, pp.925-933, 2000.

S. Ouary, N. Bizat, S. Altérac, H. Ménétrat, V. Mittoux et al., Major strain differences in response to chronic systemic administration of the mitochondrial toxin 3-nitropropionate in rats: implications for neuroprotection studies, Neurosci, vol.97, pp.521-530, 2000.

A. V. Panov, C. A. Gutekunst, B. R. Leavitt, M. R. Hayden, J. R. Burke et al., Early mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutamines, Nat Neurosci, vol.5, pp.731-736, 2002.

T. I. Peng and J. T. Greenamyre, Privileged access to mitochondria of calcium influx through N-methyl-D-aspartate receptors, Mol Pharmacol, vol.53, pp.974-980, 1998.

A. Petersen, K. Mani, and P. Brundin, Recent advances on the pathogenesis of Huntington's disease, Exp Neurol, vol.157, pp.1-18, 1999.

Z. Qin, Y. Wang, and T. N. Chasea, A caspase-3-like protease is involved in NF-kappaB activation induced by stimulation of N-methyl-D-aspartate receptors in rat striatum, Brain Res Mol Brain Res, vol.80, pp.111-122, 2000.

I. Sanchez, C. J. Xu, P. Juo, A. Kakizaka, J. Blenis et al., Caspase-8 is required for cell death induced by expanded polyglutamine repeats, Neuron, vol.22, pp.623-633, 1999.

F. Saudou, S. Finkbeiner, D. Devys, and M. Greenberg, Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions, Cell, vol.95, pp.55-66, 1998.

A. Sawa, G. W. Wiegand, J. Cooper, R. Margolis, A. H. Sharp et al., Increased apoptosis of Huntington disease lymphoblasts associated with repeat length-dependent mitochondrial depolarization, Nat Med, vol.5, pp.1194-1198, 1999.

J. B. Schulz, M. Weller, R. T. Matthews, M. T. Heneka, P. Groscurth et al., Extended therapeutic window for caspase inhibition and synergy with MK-801 in the treatment of cerebral histotoxic hypoxia, Cell Death Differ, vol.5, pp.847-857, 1998.

J. R. Simpson and O. Isacson, Mitochondrial impairment reduces the threshold for in vivo NMDA-mediated neuronal death in the striatum, Exp Neurol, vol.121, pp.57-64, 1993.

V. Stoka, B. Turk, S. Schendel, T. Cirman, S. J. Snipas et al., Lysosomal protease pathways to apoptosis: cleavage of BID, not pro-caspases, is the most likely route, J Biol Chem, vol.276, pp.3149-3157, 2001.

S. J. Tabrizi, M. W. Cleeter, J. Xuereb, J. Taanman, J. M. Cooper et al., Biochemical abnormalities and excitotoxicity in Huntington's disease brain, Ann Neurol, vol.45, pp.25-32, 1999.

P. Tompa, A. Baki, E. Schad, and P. Friedrich, The calpain cascade. Mucalpain activates m-calpain, J Biol Chem, vol.271, pp.33161-33164, 1996.

K. Wang, Calpain and caspase: can you tell the difference?, Trends Neurosci, vol.23, pp.20-26, 2000.

C. L. Wellington, L. M. Ellerby, C. A. Gutekunst, D. Rogers, S. Warby et al., Caspase cleavage of mutant huntingtin precedes neurodegeneration in Huntington's disease, J Neurosci, vol.22, pp.7862-7872, 2002.

U. Wüllner, A. Young, J. Penney, and M. F. Beal, 3-nitropropionic acid toxicity in the striatum, J Neurochem, vol.63, pp.1772-1781, 1994.

G. D. Zeevalk, E. Derr-yellin, and W. J. Nicklas, Relative vulnerability of dopamine and GABA neurons in mesencephalic culture to inhibition of succinate dehydrogenase by malonate and 3-nitropropionic acid and protection by NMDA receptor blockade, J Pharmacol Exp Ther, vol.275, pp.1124-1130, 1995.

M. M. Zeron, O. Hansson, N. Chen, C. L. Wellington, B. R. Leavitt et al., Increased sensitivity to N-methyl-Daspartate receptor-mediated excitotoxicity in a mouse model of Huntington's disease, Neuron, vol.33, pp.849-860, 2002.