Development of the synthetic diagnostic for the ultra-fast swept reflectometer

To cite this version:
A. Medvedeva, F. Clairet, C. Bottereau, R. Marcille, S. Hacquin, et al.. Development of the synthetic diagnostic for the ultra-fast swept reflectometer: ASDEX Upgrade team 4, EUROfusion MST1 team 8. 14th International reflectometry workshop, IAEA, May 2019, Lausanne, Switzerland. cea-02288900

HAL Id: cea-02288900
https://hal-cea.archives-ouvertes.fr/cea-02288900
Submitted on 16 Sep 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Development of the synthetic diagnostic for the ultra-fast swept reflectometer

A. Medvedeva1, F. Clairet1, C. Bottereau1, R. Marcille2, S. Hacquin1,3, G. D. Conway4, U. Stroth4,5, S. Heuraux6, G. Dif-Pradalier1, D. Molina1, A. Silva7, ASDEX Upgrade team4, EUROfusion MST1 team8

1CEA, IRFM, F-13108 Saint-Paul-lez-Durance
2Ecole Polytechnique, F-91128 Palaiseau
3EUROfusion Programme Management Unit, Culham Science Centre, OX14 3DB
4Max-Planck-Institut für Plasmaphysik, D-85748 Garching
5Physik-Department E28, Technische Universität München, D-85747 Garching
6Institut Jean Lamour UMR 7198 CNRS, Universite de Lorraine, F-54011 Nancy
7Instituto de Plasmas e Fusao Nuclear, IST, Universidade Lisboa, Lisbon
8For a list of members, see H.Meyer et al, Nucl. Fusion 57 102014 (2017)
1. Motivation:
 Role of turbulence in plasma confinement

2. Ultra-fast swept reflectometer
 Diagnostic capabilities for turbulence measurements

3. Synthetic diagnostic
 Project progress
1. Motivation:
 Role of turbulence in plasma confinement

2. Ultra-fast swept reflectometer
 Diagnostic capabilities for turbulence measurements

3. Synthetic diagnostic
 Project progress
Confinement is limited by turbulent transport

Plasma in a tokamak must be:

- hot and dense at the core
- cool at the edge

\rightarrow gradients \rightarrow turbulence

Turbulence should be understood, predicted and reduced for a better confinement

Objective:
Investigate turbulence during confinement changes

δT in the ASDEX Upgrade tokamak with GENE code [genecode.org]
L-H transition – crucial issue for fusion

low confinement (L-mode) \rightarrow high confinement (H-mode)

- Transport of heat and particles reduced
- Drift velocity $\vec{v}_{E \times B} = \frac{\vec{E} \times \vec{B}}{B^2} \propto E_r$
- Increase of the radial electric field creates $E \times B$ shear flow
- Shear flow suppresses turbulence

$E_r \propto E_r$

[F. Wagner, PRL1982]

[E. Viezzer, PPCF 2014]
1. Motivation:
 Role of turbulence in plasma confinement

2. Ultra-fast swept reflectometer
 Diagnostic capabilities for turbulence measurements

3. Synthetic diagnostic
 Project progress
• **UFSR** developed at CEA for Tore Supra and WEST tokamaks, transferred to ASDEX Upgrade (2013–2016) supported by EUROfusion

• 50–102 GHz X-mode

• Acquisition 2Gs/s

• Sweep time 1 μs

[F. Clairet, RSI 2017]
Turbulence properties measured by UFSR

- Density profiles with 1 µs resolution
- 1D wave propagation simulation → radial wavenumber spectra
- Density fluctuation (turbulence level)
- Frequency spectra up to 400 kHz
- Correlation length and time

- 2D effects to be considered

[A. Medvedeva, IRW 2015]
Background flow \((E_{r0})\) evolution during I-phase

Proxy for radial electric field:

\[
E_r \approx \frac{\nabla p_e}{en_e} = T_e \frac{\nabla n_e}{en_e} + \frac{\nabla T_e}{e} = E_{r0}
\]

[F. L. Hinton, RMP 1976]

\(E_{r0}\) minimum (at \(\rho_{pol} = 0.98\)) deepens during I-phase from \(-5\) to \(-20\) kV/m
Turbulence and E_{r0} oscillate during I-phase

- Deep negative values of E_{r0} appear between the turbulence bursts
- Crash of E_{r0} happens together with the turbulence increase

Established I-phase might be explained by edge instabilities causing a fast relaxation of pressure (turbulence and flow in phase)

Edge coherent modes appear in the pedestal region and might play a role

[A. Medvedeva, PPCF 2017]
Edge instabilities appear during I-phase

In the pedestal region $0.95 < \rho_{pol} < 1$ the fluctuation amplitude decreases, the spectra become narrower during the I-phase and in H-mode due to the radial electric field shear.

FFT $(A(t)e^{i\Phi(t)})$

Edge coherent modes

[A. Medvedeva, 45th EPS 2018, PPCF accepted]
1. Motivation:
 Role of turbulence in plasma confinement

2. Ultra-fast swept reflectometer
 Diagnostic capabilities for turbulence measurements

3. Synthetic diagnostic
 Project objectives and progress
Spontaneous organisation of a set of regularly spaced weak transport barriers: ExB staircase predicted by GYSELA

Project at the crossroads between theory, simulation and experiments
- Turbulence map simulated with gyrokinetic code
- Finite Difference Time Domain 2D code for wave propagation
- Reproduce frequency and wavenumber spectra, correlation length and time
- Compare with turbulence code
Turbulence map simulated with gyrokinetic code

Low collisional plasma → gyrokinetic description

- flux-driven → mimic experiments
- self-consistent interplay btw core, edge & simplified SOL model
- global description: kinetic ions & adiabatic or kinetic trapped electrons
- self-organised E_r well

Density map from GYSELA, 10^{19} m$^{-3}$

RMS of $\delta n/n$ [in %]

Normalised radius ρ

$E_r \sim \nabla p / ne$

Experimental

[GYSELA SOL & limiter]

$[G. \text{ Dif-Pradalier}]$
Finite Difference Time Domain 2D code

• Finite Difference Time Domain 2D full wave code for wave propagation [Yee 1966, Da Silva 2014]

![Diagram showing finite difference grid with labels for Ey, Jy, Hz, Ex, Jx]

Soft source: \(H_z(kdx, y, ndt) = H_z(kdx, y, (n - 1)dt) + e^{j\omega(ndt)} e^{-\frac{(y-y_0)^2}{\sigma^2}} \frac{A_0}{\sqrt{\varepsilon_0\mu_0}} \)

Measured signal: \(E_n^y(x_s, y_s) = A_0^* e^{j\omega_0 ndt} + a_1^* e^{j(\omega_0 ndt - \phi)} \)

Calculation speed (Python+C): 1000 x 1000 x 5000 points 10min for \(F_0 \)

\[dt = \frac{1}{40f_0} = 5 \cdot 10^{-13} s, \quad dx = 2cdt \]
Further development: sweep simulation

Sweep: \[\omega_0 \rightarrow \omega = \omega_0 + v_\omega t \]

Source: \[e^{i(\omega_0 t + v_\omega t^2 + \Delta \varphi(t))} \]

+ Mimic real reflectometer
 - Optimised calculation speed
 - 1 \(\mu\)s sweep 2 000 000 points \(\rightarrow\) 70 hours
 0.01 \(\mu\)s sweep 20 000 points \(\rightarrow\) 1 hour
 \[F_{\text{beat}} \approx 400 \text{ MHz} \rightarrow 40 \text{ GHz} \]

- Difficulties of signal extraction
Sign inversion of the spectra asymmetry during I-phase can be explained by a sawtooth-like cutoff layer.

Further application:
- modes’ size, flow detection, turbulence level and wavenumber spectra,
- correlation analysis.

Experiment

2D code application
Synthetic diagnostic: outlook

- Create 2D full wave code
- Couple with GYSELA turbulence maps
- Parallel calculation for (F,t) – 10 min each
- Optimise calculation speed by sweeping of frequency
 - Integrate 2D code to the loop method of wavenumber/turbulence level analysis
 - Add functions for correlation analysis
 - Reproduce spectra for various turbulence scenarios for ASDEX Upgrade and WEST data, compare with GYSELA and GENE
Conclusions

- First studies of the electron density and density fluctuations dynamics during L-H transitions in ASDEX Upgrade have been performed with a time resolution of 1 μs using 1D wave propagation simulation.

- 2D full wave code is developed for interpretation of ultra-fast swept reflectometer data and coupled with GYSELA and GENE turbulence simulations.

- Synthetic diagnostic is being optimised for further data analysis.
Slow sweep simulation

Ey of probing wave

Z, m

R, m

F_{\text{beat}}

1e2

5000 10000 15000 20000 25000 30000 35000 40000
time points
Loop method for wavenumber spectra

Signal phase fluctuations are induced by density fluctuations: $S_{\delta n}(k) = T(k) \cdot S_{\delta \Phi}(k)$

Density fluctuations level:

$$\left(\frac{\delta n}{n}\right)^2 = \frac{1}{k_{\text{max}} - k_{\text{min}}} \int_{k_{\text{min}}}^{k_{\text{max}}} S_{\delta n}(k) \, dk$$
Density fluctuation dynamics: k_r-spectra

- Turbulence level falls towards core
- After L-H transition density fluctuations with small k_r are suppressed in the pedestal region

$$\rho_s = \frac{\sqrt{T_e/m_i}}{\Omega_{ci}}$$

ion-sound Larmor radius