
HAL Id: cea-02283406
https://hal-cea.archives-ouvertes.fr/cea-02283406

Submitted on 10 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Soundness of a Dataflow Analysis for Memory
Monitoring

Dara Ly, Nikolai Kosmatov, Julien Signoles, Frédéric Loulergue

To cite this version:
Dara Ly, Nikolai Kosmatov, Julien Signoles, Frédéric Loulergue. Soundness of a Dataflow Analysis for
Memory Monitoring. HILT 2018 Workshop on Languages and Tools for Ensuring Cyber-Resilience
in Critical Software-Intensive Systems, Nov 2018, Boston, United States. �10.1145/3375408.3375416�.
�cea-02283406�

https://hal-cea.archives-ouvertes.fr/cea-02283406
https://hal.archives-ouvertes.fr

Soundness of a Dataflow Analysis for Memory Monitoring
Dara Ly

CEA List

Software Reliability and Security Lab

Gif-sur-Yvette, France

Université d’Orléans

LIFO EA 4022

Orléans, France

firstname.name@cea.fr

Nikolai Kosmatov

Julien Signoles

CEA List

Software Reliability and Security Lab

Gif-sur-Yvette, France

firstname.name@cea.fr

Frédéric Loulergue

Northern Arizona University

School of Informatics Computing and

Cyber Systems

Flagstaff, Arizona, USA

firstname.name@nau.edu

ABSTRACT
An important concern addressed by runtime verification tools for

C code is related to detecting memory errors. It requires to mon-

itor some properties of memory locations (e.g., their validity and

initialization) along the whole program execution. Static analysis

based optimizations have been shown to significantly improve the

performances of such tools by reducing the monitoring of irrel-

evant locations. However, soundness of the verdict of the whole

tool strongly depends on the soundness of the underlying static

analysis technique. This paper tackles this issue for the dataflow

analysis used to optimize the E-ACSL runtime assertion checking

tool. We formally define the core dataflow analysis used by E-ACSL
and prove its soundness.

KEYWORDS
dataflow analysis, memory monitoring, runtime assertion checking,

proof of soundness, formal semantics, E-ACSL tool

ACM Reference Format:
Dara Ly, Nikolai Kosmatov, Julien Signoles, and Frédéric Loulergue. 2018.

Soundness of a Dataflow Analysis for Memory Monitoring. In Proceedings
of Workshop on Languages and Tools for Ensuring Cyber-Resilience in Critical
Software-Intensive Systems (HILT 2017). ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Context. Memory related errors can provoke serious defects in

software [5]. A study based on IBM MVS software [26] reports that

about 50% of detected software errors were related to pointers and

array accesses. Memory errors account for about 50% of reported

security vulnerabilities [27]. This is particularly an issue for a pro-

gramming language like C that is both the most commonly used

for development of critical system software and one of the most

poorly equipped with adequate protection mechanisms. The devel-

oper remains responsible for correct allocation and deallocation

of memory, initialization of variables, pointer dereferencing and

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

HILT 2017, November 5-6, 2018, Boston, MA, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

manipulation (using casts, offsets, etc.), as well as for the validity

of indices in array accesses.

Among themost useful techniques for detecting and locating soft-

ware errors, runtime assertion checking has become a widely-used

programming practice [6]. Runtime checking of memory-related

properties can be realized using systematic monitoring of memory

operations. However, to do so efficiently is difficult, because of the

large number of memory accesses in modern programs.

This paper more specifically considers the problem of mem-

ory monitoring of C programs for runtime assertion checking in

the context of Frama-C [14], a platform for analysis of C code.

Frama-C offers an expressive executable specification language

E-ACSL, and comes with a runtime assertion checking plugin, also

called E-ACSL [8]. The E-ACSL plugin takes as an input a C pro-

gram P annotated with an E-ACSL specification, and outputs an

instrumented program P ′ having the following properties:

• if the execution of P satisfies all the properties expressed in

the specification, the functional behavior of P ′ is the same

as that of the original program P ;
• whenever the execution of P violates a property of the spec-

ification, the program P ′ is aborted and an error is signaled.

This is done by translating the given specification into C code:

the generated code implements a monitor verifying at runtime the

conformance of the program with regard to the specification. In

order to support memory-related E-ACSL annotations for pointers

andmemory locations (such as being valid, initialized, in a particular

block, with a particular offset, etc.), the instrumented program P ′

needs to keep track of relevant memory operations previously

executed by the program.

Motivation. Previous work demonstrated that the performances

of a runtime verification tool can be significantly improved using a

preliminary static analysis step [11]. A dedicated dataflow analysis

can be used to compute an (over-approximated) set of relevant

memory locations that should be monitored. All operations chang-

ing the status (i.e. validity, initialization) of these locations should

be tracked. All other locations are irrelevant: the monitoring tool

does not need to monitor them. For the E-ACSL tool, this technique

leads to important performance savings that vary between 60% and

73% [11].

However, this optimization can alter the correctness of the whole

tool. Indeed, if the dataflow analysis is not sound, the monitoring

of some relevant locations can be missed and their status can be

wrongly identified. Since an E-ACSL annotation can check both

for a pointer validity or its negation, this obviously can lead both

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

HILT 2017, November 5-6, 2018, Boston, MA, USA Dara Ly, Nikolai Kosmatov, Julien Signoles, and Frédéric Loulergue

to false positives (an annotation failure is wrongly reported) and

false negatives (a real annotation failure is not reported). For a tool

like E-ACSL— whose goal is to check a formal specification and

that is in particular used in combination with sound static analysis

techniques — this lack of soundness guarantees is an important

issue. Thus, to ensure that runtime assertion checking always pro-

vides the correct verdict, the soundness of the underlying dataflow

analysis should be formally established.

Contributions. The main contributions of this paper include a

formal definition of a core dataflow analysis used by the E-ACSL
tool and a proof of soundness of this analysis. Another contribution

is an operational semantics of the monitor that naturally extends

a standard operational semantics. We think that it is particularly

suitable when reasoning about memory monitoring tools such as

E-ACSL and could be reused in future work.

Outline. The paper is organized as follows. Section 2 motivates

our work. Section 3 introduces the considered programming and

specification languages, in particular their formal semantics. The

dataflow analysis is defined in Section 4. Section 5 states and proves

the soundness property of the analysis. Section 6 presents related

work, and Section 7 gives concluding remarks and future work.

2 MOTIVATING EXAMPLE
Consider the toy C function at the left of Fig. 1. It contains a formal

assertion guaranteeing that dereferencing pointer p is safe. This

kind of assertions may be automatically generated by Frama-C [14].

The E-ACSL tool [23] is able to take this annotated function as

input in order to generate the instrumented version at the right

of Fig. 1 (where we assume a 32-bit architecture). If executed, this

instrumentation nicely stops the execution whenever the assertion

is violated, preventing an incorrect memory access. To be able to

check at runtime this kind of memory-related annotations, the code

generated by E-ACSL records memory operations in the E-ACSL dy-
namic memory model linked to the instrumented program [28]. For

instance, every allocation (resp. deallocation) is recorded through

a call to function store_block (resp. delete_block), while every
assignment is recorded through a call to function full_init.

However, even if the E-ACSL dynamic memory model is heavily

optimized, these additional instructions significantly slow down the

execution [28]. Fortunately, a complete instrumentation is almost

never necessary. Here, for instance, only p needs to be monitored.

Monitoring memory locations not relevant to p is not useful. In

this example, when the annotation is evaluated, p is equal to the

address of x because of the alias created by the first assignment.

E-ACSL implements an over-approximating dataflow analysis

to compute what needs to be monitored. It takes care of aliasing

and has already been proved capable to significantly improve the

efficiency of the generated code [11]. Here, for instance, all the lines

of code in gray may soundly be discarded, but the fact that x is

properly allocated must still be monitored.

The goal of our work is to formalize the core of this analysis in

order to prove its soundness. Indeed, if unsound, it would lead to

incorrect verdict by E-ACSL. Here, if the line store_block(&x, 4)
is omitted, E-ACSL would incorrectly conclude that dereferencing

pointer p is unsafe. Even worse, in other contexts, it could conclude

that dereferencing a pointer would be safe while it is not, leading

to security weaknesses.

3 LANGUAGE DEFINITION
E-ACSL takes as an input a C program annotated with E-ACSL
specifications [8]. The whole language is far too complex to be

handled formally in this paper. Rather, we present our analysis, its

formalization and its proof of correctness on a relevant subset of C
annotated with E-ACSL specifications. This subset is large enough

to present the main issues tackled in our analysis.

3.0.1 Syntax. Figure 2 presents the syntax of our language. Ex-

pressions contain arithmetic expressions and pointer accesses (ad-

dresses and offset shifts), and are pure (i.e. side-effect free). Since our

analysis focuses on memory management, we only detail memory

values here.

Basic statements are assignments of an expression to a left-value

(which can be either a variable or a pointer access), memory alloca-

tions and deallocations, and assertions. Compound statements are

sequences, conditionals and loops.

Assertions evaluate terms of a propositional calculus with integer

arithmetic and predicates over memory locations. Terms and predi-

cates notably contain five built-in logic functions and predicates

(detailed in Fig. 3) usable to express a rich set of memory-related

properties [11].

3.0.2 Memory model. Since our language features manual memory

management via allocation and deallocation, its formal semantics

relies on a memory model that specifies read and write accesses to

the memory, here called execution memory (or, in short, memory
whenever the context is clear enough).

Execution Memory. Since our language is a simple C-like lan-

guage, we use a simplified CompCert memory model [16]. Indeed,

the CompCert memory model was developed for the purpose of

defining a semantics for C. In this model, the memory is viewed in

an abstract manner as a collection of blocks. Physical placement of

blocks and their relative position is not modeled. A block contains a

range of valid offsets within it and is entirely defined by its bounds

at allocation time. Consequently, a valid address is defined by an

ordered pair (b, δ) of a block and an offset. In the following, mem
denotes the type of memory states, while block denotes that of

blocks. A memory state associates addresses to values. These values
have the type val defined as follows:

v ::= Int(n) | Ptr(b, δ) | Undef

Here, Undef corresponds to the initial value at any address that

was not yet written to.

Four operations may be performed on a given memory state:

allocation, deallocation, load and store, respectively defined through

the operations alloc, dealloc, load and store below.
Assume a memory stateM , a block b, three integers lo, hi , δ and

a value v . Statement alloc(M, lo,hi) allocates a new block in M ,

with lower bound lo (inclusive) and higher boundhi (exclusive), and
returns the updated memory state with the new block. Statement

dealloc(M,b) deallocates the block b inM , returning the updated

memory state where b has bounds (0, 0), which makes it impossible

to write to or read from. We model the fact that some operations

Soundness of a Dataflow Analysis for Memory Monitoring HILT 2017, November 5-6, 2018, Boston, MA, USA

int f(void) {
int x, y, z, *p;
p = &x;
x = 0;
y = 1;
z = 2;
/*@ assert

\valid(p); */
*p = 3;
return x;

}

int f(void) {
int x, y, z, *p;
store_block(&p, 4);
store_block(&z, 4);
store_block(&y, 4);
store_block(&x, 4);
full_init(&p);
p = &x;
full_init(&x);
x = 0;
full_init(&y);
y = 1;

full_init(&z);
z = 2;
/*@ assert \valid(p); */
e_acsl_assert(valid(p,

sizeof(int)));
*p = 3;
delete_block(&p);
delete_block(&z);
delete_block(&y);
delete_block(&x);
return x;

}

Figure 1: A C function (left) and its instrumented version (right).

fail (e.g. dealloc called on a block already deallocated) by using

an option type as a return type. A value of type memory option
either contains a memory stateM (in which case the option value is

denoted Some(M)), or contains nothing (denoted None). Statement

load(M,b, δ) reads the value at address (b, δ) inM , if possible, and

returns it. Again, this operation can fail, e.g., if the supplied address

is not valid. Finally, store(M,b, δ ,v) writes the value v at address

(b, δ) inM if possible, and fails otherwise. If successful, the function

returns the memory state updated with the new value. Besides these

four operations, the model also provides a function bounds giving

the bounds of a blockb in amemory stateM : bounds(M,b) = (lo,hi)

left values l ::= x variable

| ⋆a pointer access

mem. values a ::= l left value

| a ++ e pointer offset

| &l address

expressions e ::= a memory value

| · · · arithmetic expr.

statements s ::= skip; skip

| l = e; assignment

| l = malloc(n); allocation

| free(l); deallocation

| /∗@ assert p; ∗/ assertion

| if (e) then s else s conditional

| while(e) s loop

| s s sequence

predicates p ::= t ≡ t | t ≤ t comparators

| p ∧ p | p ∨ p | ¬p logic connectors

| \valid(a) a valid pointer

| \init(a) ⋆a initialized

terms t ::= e pure expressions

| \base_addr(a) base addr. of a’s mem. block

| \block_length(a) size of a’s mem. block

| \offset(a) offset of a in its mem. block

| · · · pure expr. combined with

mem.-related constructs

types τ ::= int integral type

| τ⋆ pointer type

Figure 2: Formal syntax of the considered language.

Properties Informal semantics

\base_addr(a) base address of the block containing address a
\block_length (a) size (in bytes) of the block containing address a
\offset (a) offset (in bytes) of a in its block

\valid(a) is true if and only if reading and writing

the contents of a is safe

\init(a) is true if and only if the contents of a
has been initialized

Figure 3: Memory Built-ins.

where lo and hi are respectively the lower and higher bounds of b
inM .

For the sake of simplicity, we suppose that all types have a size of

one byte in memory, thus ruling out all considerations of alignment

or overlapping memory accesses.

The axioms of this model are similar to those of the CompCert
memory model [16]. They express algebraic properties allowing to

reason about memory states, such as “load-after-store”. As these

properties are reasonably intuitive, we omit them here.

In the following, we noteM ⊨ (b, δ) the proposition “(b, δ) is a
valid address in the memory stateM”, meaning that:

(1) b was allocated and not (yet) deallocated inM ; and

(2) lo ≤ δ < hi where lo and hi are the bounds of b inM .

Observation Memory. In addition to the memory space in which

the program executes, our language uses a second memory store,

called observation memory, in order to record the pieces of infor-

mation (often called metadata) about the execution memory blocks

that are required to evaluate at runtime the memory built-ins of

Fig. 3. This model is similar to that of the execution memory, but

instead of storing data values, it records which memory blocks have

been allocated, their size and their per-byte initialization status (i.e.

which bytes are initialized or uninitialized).

Consequently, along with execution memory, we define another

type obs to model such a representation of the execution memory

used by a monitor to evaluate the memory-related predicates of our

language. The set of operations associated to observation memory

differs slightly from that of execution memory.

Assume an observation memory M , a block b and three inte-

gers lo, hi , δ . Statement store_block(M,b, lo,hi) records block
b as allocated, with bounds lo and hi , and returns the updated

HILT 2017, November 5-6, 2018, Boston, MA, USA Dara Ly, Nikolai Kosmatov, Julien Signoles, and Frédéric Loulergue

observation memory. Statement delete_block(M,b) marks b as

deallocated in M and returns the updated observation memory.

Statement initialize(M,b, δ) marks the content of address (b, δ)
as initialized and returns the updated observation memory. Finally,

read_init(M,b, δ) reads the initialization status of the content at

address (b, δ), returning true if an initialize operation has been

performed at this address before, and false otherwise. The seman-

tics of the observation memory statements is permissive: they do

not fail and silently ignore incorrect operations such as an attempt

to delete a non-existing block or an attempt to record as initialized

a non-existing memory location.

3.1 Operational semantics
This section introduces an operational semantics for our language.

The evaluation of expressions draws inspiration fromClight [3], the
source language of CompCert, while statements have a small-step

semantics akin to that of a While language, as in [19] for instance.

A noticeable trait of our semantics is that it is blocking: any exe-

cution ends immediately (cannot continue further) if an assertion

is violated. This property is indeed the fundamental property of

Frama-C and E-ACSL [7].

The semantics is expressed by means of six forms of evaluation

judgments:

• M ⊨
lv
l ⇐ (b, δ) evaluates a left-value l to an address (b, δ)

in a memoryM ;

• M ⊨e e ⇒ v evaluates an expression e to a value v in a

memoryM ;

• M ⊨t t ⇒ v evaluates a term t to a value v in a memoryM ;

• M ⊨p p ⇒ P evaluates a predicate p to a truth value P in a

memoryM ;

• ⟨s,M1,M1⟩ → (M2,M2) evaluates a statement s in an execu-

tion memoryM1 and an observation memoryM1, then ends

the execution in an execution memoryM2 and an observa-

tion memoryM2.

• ⟨s1,M1,M1⟩ → ⟨s2,M2,M2⟩ also evaluates a statement s1 in
an execution memoryM1 and an observation memoryM1,

then continues the execution with the statement s2 in an

execution memoryM2 and an observation memoryM2.

We consider only execution of well typed programs (even if the

simple type system is omitted here), thus equipped with a typing

environment Γ. We also associate to a given program an environ-

ment E and initial memory states M0 and M0. The environment

E maps each variable of the program to a block in M0, which is

otherwise empty.

The evaluation of expressions and left-values is described in

Figure 4. Left-values are terms at the left of an assignment, there-

fore their evaluation yields a memory location to be written to. As

mentioned before, evaluating expressions does not alter memory:

the expressions are pure. When evaluating a left-value as an ex-

pression, the left-value is resolved into a memory location, which

is then read in the execution memory with a load. As specified in

the C standard [10], reading an uninitialized value is an undefined

behavior. Consequently, the evaluation is valid only if the retrieved

value is not Undef.

LE-var

E(x) = b

M ⊨
lv
x ⇐ (b, 0)

LE-deref

M ⊨e a ⇒ Ptr(b, δ)

M ⊨
lv
⋆a ⇐ (b, δ)

EE-lval

v , Undef M ⊨
lv
l ⇐ (b, δ)

load(M,b, δ) = Some(v)

M ⊨e l ⇒ v

EE-int

M ⊨e n ⇒ Int(n)

EE-shift

M ⊨e a ⇒ Ptr(b, δ)
M ⊨e e ⇒ Int(n)

M ⊨e a ++ e ⇒ Ptr(b, δ + n)

EE-addr

M ⊨
lv
l ⇐ (b, δ)

M ⊨e &l ⇒ Ptr(b, δ)

EE-op

M ⊨e e1 ⇒ Int(n1) M ⊨e e2 ⇒ Int(n2)

M ⊨e e1 op e2 ⇒ Int(n1 op n2)

where op ∈ {+,−, ∗, /,==, <=}

EE-negNz

M ⊨e e ⇒ Int(n) n , 0

M ⊨e !e ⇒ Int(0)

EE-negZ

M ⊨e e ⇒ Int(0)

M ⊨e !e ⇒ Int(1)

Figure 4: Evaluation of expressions and left-values.

Predicates describe properties of the program at the current

execution point. Their semantics is given in Figure 5, along with

that of logical terms.

Statements can be broadly classified in two categories: those

operating on the memory, and those defining the program’s con-

trol flow. The former, described in Figure 6, modify the execution

memory and record the corresponding operation in the observation

memory. For instance an assignment (rule assign) stores the com-

puted value at the memory location defined by the left-value, but

also records in the observation memory that the assigned memory

location is now initialized. Similarly, in malloc (resp. free) the

addition (resp. deletion) of a block is recorded in the observation

memory.

The semantics of control flow related statements, presented in

Figure 7, is standard. Notice that an assertion (rule assert) whose

predicate is evaluated to false stops the execution.

4 DATAFLOW ANALYSIS
Our dataflow analysis aims at computing an over-approximation

of the set of blocks needed to evaluate at runtime the predicates of

a given program. As such it is reminiscent of liveness analysis, in

the sense that it computes parts of memory that may be used later

for some computations. However our problem differs significantly

from the “canonical” liveness analysis such as in [19], in that our

language has dynamic allocations and pointer aliasing. The main

difficulty is to deal with this additional complexity while keeping

the analysis simple enough to be proven sound.

We manage it by: providing the result of a preliminary points-to

analysis to the present analysis, andmaking large over-approximations.

Soundness of a Dataflow Analysis for Memory Monitoring HILT 2017, November 5-6, 2018, Boston, MA, USA

TE-ofs

M ⊨e a ⇒ Ptr(b, δ)

M ⊨t \offset(a) ⇒ Int(δ)

TE-baddr

M ⊨e a ⇒ Ptr(b, δ)

M ⊨t \base_addr(a) ⇒ Ptr(b, 0)

TE-bsize

M ⊨e a ⇒ Ptr(b, δ)
bounds(M,b) = (lo,hi)

M ⊨t \block_length(a) ⇒ Int(hi − lo)

TE-expr

M ⊨e e ⇒ v

M ⊨t e ⇒ v
PE-valid

M ⊨e a ⇒ Ptr(b, δ)
M ⊨ (b, δ)

M ⊨p \valid(a) ⇒ true

PE-invalid

M ⊨e a ⇒ Ptr(b, δ)
M ⊭ (b, δ)

M ⊨p \valid(a) ⇒ false

PE-init

M ⊨e a ⇒ Ptr(b, δ)
load(M,b, δ) = Some(v)

v , Undef

M ⊨p \init(a) ⇒ true

PE-uninit

M ⊨e a ⇒ Ptr(b, δ)
load(M,b, δ) = Some(Undef)

M ⊨p \init(a) ⇒ false

PE-eq

M ⊨t t1 ⇒ v1
M ⊨t t2 ⇒ v2 v1 = v2

M ⊨p t1 ≡ t2 ⇒ true

PE-neq

M ⊨t t1 ⇒ v1
M ⊨t t2 ⇒ v2 v1 , v2

M ⊨p t1 ≡ t2 ⇒ false

Figure 5: Evaluation of terms and predicates.

The latter leads to a quite imprecise analysis meeting one of our

primary concerns to keep the E-ACSL compilation time reasonably

fast. Therefore, in the balance between precision and speed of the

analysis, we favor speed most of the time. However, even if im-

precise, this analysis allows E-ACSL to improve significantly the

efficiency of the generated monitor by reducing the instrumenta-

tion [11].

The analysis computes for each program point a certain set

of variables which defines the zones of memory that will be in-

strumented for runtime monitoring purposes. At some program

point l , any block of memory reachable (through dereferencing

and offset shifts) from one of the variables computed at l is instru-
mented. Therefore, although the analysis is formally expressed in

terms of variables, it may be useful to consider these variables as

representing the set of all memory blocks reachable from them.

Instrumenting all these blocks—when maybe only some of them

assign

M1 ⊨e e ⇒ v store(M1,b, δ ,v) = Some(M2)

M1 ⊨lv l ⇐ (b, δ) initialize(M1,b, δ) = M2

⟨l = e; ,M1,M1⟩ → (M2,M2)

malloc

store_block(M1,b
′, lo,hi) = M3

hi − lo = n initialize(M3,b, δ) = M2

M1 ⊨e e ⇒ Int(n) alloc(M1, lo,hi) = (M3,b
′)

M1 ⊨lv l ⇐ (b, δ) store(M3,b, δ , Ptr(b
′, 0)) = Some(M2)

⟨l = malloc(e); ,M1,M1⟩ → (M2,M2)

free

M1 ⊨e a ⇒ (b, 0)

free(M1,b) = Some(M2) delete_block(M1,b) = M2

⟨free(a); ,M1,M1⟩ → (M2,M2)

assert

M ⊨p p ⇒ true

⟨/∗@ assert p; ∗/ ,M,M⟩ → (M,M)

Figure 6: Evaluation of assignments, allocations, deallocations,
and assertions.

seqCont

⟨s1,M1,M1⟩ → ⟨ŝ1,M2,M2⟩

⟨s1 s2,M1,M1⟩ → ⟨ŝ1 s2,M2,M2⟩

seqEnd

⟨s1,M1,M1⟩ → (M2,M2)

⟨s1 s2,M1,M1⟩ → ⟨s2,M2,M2⟩

ifTrue

M ⊨e e ⇒ Int(n) n , 0

⟨if (e) then st else sf ,M,M⟩ → ⟨st ,M,M⟩

ifFalse

M ⊨e e ⇒ Int(0)

⟨if (e) then st else sf ,M,M⟩ → ⟨sf ,M,M⟩

whileCont

M ⊨e e ⇒ Int(n) n , 0

⟨while (e) s,M,M⟩ → ⟨s while (e) s,M,M⟩

whileEnd

M ⊨e e ⇒ Int(0)

⟨while (e) s,M,M⟩ → (M,M)

Figure 7: Evaluation of control flow related statements.

would be strictly necessary—is one of the cases where we trade

precision for speed in the analysis.

Reachability is formally defined by viewing memory as a graph

where blocks are vertices, and pointers define edges. Following this

intuition, we define the relation 7→M between blocks of a memory

M as “given the memory state M , b 7→M b ′ if there is one value
in b that is a pointer to b ′ with a valid offset”. This definition is

HILT 2017, November 5-6, 2018, Boston, MA, USA Dara Ly, Nikolai Kosmatov, Julien Signoles, and Frédéric Loulergue

formally expressed as follows:

b 7→M b ′ if ∃δ , δ ′ ∈ Z such that

M ⊨ (b, δ)
M ⊨ (b ′, δ ′)
load(M,b, δ) = Some(Ptr(b ′, δ ′))

We define 7→⋆
M to be the reflexive, transitive closure of 7→M and

use it to define the set of reachable blocks from a memory value. If

a is a value such that M ⊨e a ⇒ Ptr(ba, δa), the set of reachable
blocks from a inM is defined by:

RM (a) =
{
b ∈ Blocks | ba 7→⋆

M b
}

4.1 Definition
The analysis is classically defined on a labeled Control Flow Graph

(CFG) where basic blocks are single statements (skip, assignment,

allocation, deallocation, and assertion) and tests (guards of condi-

tionals and loops).

For a given program s we note I(s) (resp. F (s)) the label of the
CFG’s initial block (resp. the labels of the set of final blocks). In the

example program s in Figure 8, we have I(s) = 1 and F (s) = {2}.

f = 1;

while (0 < n)

{

f = f * n;

n = n - 1;

}

f = 1;1

0 < n2

f = f * n; 3

n = n - 1; 4

Figure 8: CFG of a simple program.

We define the analysis as a pair (livein, liveout) of functions map-

ping each label of the CFG to a set of program variables. They are

assumed to be the least solution of the constraint system presented

in Figure 9. As we are solely interested in the soundness of the
analysis, we do not study how this solution is computed.

For a given label l , livein(l) and liveout (l) are the set of live vari-
ables respectively at the entry and the exit of the block labeled l . (To
avoid any risk of confusion between labels and left values, in the

remainder of the paper, we denote a left value by lv .) Like a liveness
analysis, the analysis is backward: the information associated to

a block is computed from that of its successors in the CFG. Like

a liveness analysis, it is over-approximating: it combines together

information originating from multiple branches using the union

operator.

The function gen defines how statements generate live variables;

while most statements simply transfer the existing liveness infor-

mation, new liveness information is generated in two cases.

First, predicates generate the base variables of their arguments,

as described by the recursive functions ρ and θ . The base variable
of a memory value a is the first variable appearing in a’s syntactical
structure. It is, very concretely, the first variable written, in left-to-

right order, when writing the source code for a. The base variable
is computed by the function base, inductively defined as following:

base(x) = x base(⋆a) = base(a)
base(&x) = x base(&(⋆a)) = base(a)

base(a ++ e) = base(a).

Second, in case of an assignment lv = e; where e is a pointer,

if the left-value lv is under monitoring, the assigned pointer e
is generated. The condition “lv is under monitoring” is formally

expressed by the proposition ∃x ∈ liveout (l), &x 7→⋆
A

lv. Indeed
lv is monitored if and only if it is reachable from one of variables

in liveout (l). Since reachability cannot be computed statically, our

analysis uses as a parameter a points-to analysis A computing

which values of the program may point to which others. We use

the result of A in the form of the relation 7→⋆
A
: &x 7→⋆

A
lv means

that there is a path from &x to lv in the points-to graph.

4.2 Correctness
Since our analysis aims at determining which blocks must be mon-

itored by E-ACSL, being correct means that instrumenting only

blocks resulting from the analysis must not alter the evaluation of

assertions in the output program. Therefore, an informal way to

state the correctness could be: “at any program point, altering the

observation memory outside of the domain defined by the analysis

does not alter the program’s behavior”.

In order to further formalize this idea, we need to define notions

for comparing two execution traces of a program. In particular, we

want to be able to compare two observation memories, and state

that they are the same on a certain set of blocks. LetM andM ′
be

observation memories, and B be a set of blocks. We say thatM and

M ′
are equivalent on B, and we note M ∼B M ′

if they “have the

same values on the blocks in B”, that is:

∀b ∈ B,

∀δ ∈ Z, M ⊨ (b, δ) ⇔ M ′ ⊨ (b, δ)

bounds(M,b) = bounds(M ′,b)

∀δ ∈ Z, read_init(M,b, δ) = read_init(M ′,b, δ)

Following Nielson et al. [19] the theorem is composed of two

statements: one describes the case of an evaluation step that termi-

nates the program, and the other one the case where it continues

thereafter.

Immediate Termination.

Theorem 4.1. Let ⟨s,M1,M1⟩ → (M2,M2) be an execution step,
and let M ′

1
be an observation memory such that M1 ∼B1

M ′
1
, with

B1 =
⋃
x ∈livein(I(s)) RM1

(&x).
Then there exists M ′

2
such that ⟨s,M1,M

′
1
⟩ → (M2,M

′
2
) and

M2 ∼B2
M ′

2
, with B2 =

⋃
x ∈liveout (I(s)) RM2

(&x).

Continued Evaluation.

Theorem 4.2. Let ⟨s1,M1,M1⟩ → ⟨s2,M2,M2⟩ be an execution
step, and let M ′

1
be an observation memory such that M1 ∼B1

M ′
1
,

with B1 =
⋃
x ∈livein(I(s1)) RM1

(&x).
Then there exists M ′

2
such that ⟨s1,M1,M

′
1
⟩ → ⟨s2,M2,M

′
2
⟩ and

M2 ∼B2
M ′

2
, with B2 =

⋃
x ∈livein(I(s2)) RM2

(&x).

The following diagram gives a visual intuition of the correctness

property, here in the case of immediate termination:

⟨s,M1,M1⟩ → (M2,M2)

∼B1
∼B2

⟨s,M1,M
′
1
⟩ → (M2,M

′
2
)

Soundness of a Dataflow Analysis for Memory Monitoring HILT 2017, November 5-6, 2018, Boston, MA, USA

liveout (l) ⊇

{
∅ if l ∈ F (s)⋃

{livein(l ′) | (l, l ′) ∈ flow(s)} otherwise

livein(l) ⊇ liveout (l) ∪ gen(l)

gen
(
[lv = e;]l

)
=

{
{base(e)} if lv is a pointer, and ∃ x ∈ liveout (l), &x 7→⋆

A
lv

∅ otherwise

gen
(
[skip;]l

)
= ∅ gen

(
[e]l

)
= ∅ gen

(
[p]l

)
= ρ(p)

gen
(
[lv = alloc(e);]l

)
= ∅ gen

(
[free(l);]l

)
= ∅

ρ(\valid(a)) = {base(a)} ρ(p1 ⊙ p2) = ρ(p1) ∪ ρ(p2) ⊙ ∈ {∧,∨}

ρ(\init(a)) = {base(a)} ρ(t1 ⋄ t2) = θ (t1) ∪ θ (t2) ⋄ ∈ {≡, ≤}

ρ(¬p) = ρ(p)

θ (e) = ∅ θ (\base_addr(a)) = {base(a)}
θ (\offset(a)) = {base(a)} θ (\block_length(a)) = {base(a)}

Figure 9: Dataflow analysis definition.

5 PROOF OUTLINE
The proof is by induction on the structure of the evaluation deriva-

tion. The most difficult cases are statements that perform memory

operations, namely assignment, allocation and deallocation. The

other cases are straightforward, the proof relying mainly on the

properties of least fixed point of (livein, liveout).
We use two kinds of auxiliary lemmas. Some describe proper-

ties of the equivalence relation ∼B such as the fact that it is an

equivalence relation, how to combine equivalences between the

same two memories on multiple domains, or conversely how two

memories equivalent on a given domain remain equivalent when

the same memory operation is performed on both. Others describe

the evolution (or invariance) of reachable blocks sets when memory

operations are performed.

5.1 Lemmas.
Lemma 5.1 (Domain Restriction). IfM ∼X M ′ and Y ⊆ X then

M ∼Y M ′.

Lemma 5.2 (Domain Union). If M ∼X M ′ and M ∼Y M ′ then
M ∼X∪Y M ′.

Lemma 5.3 (Eqivalence Preservation (initialization)). For
a given domain B, two equivalent memories remain equivalent when
the same initialize operation is performed on both.

Lemma 5.4 (Reachability from base address). Any block reach-
able from a given memory location a is also reachable from its base
address:

∀a ∈ Memval, ∀M, RM (a) ⊆ RM (&base(a)).

Lemma 5.5 (Writing outside of a reachable set does not

modify it). Let x be a variable. For a given memory state M1, if
store(M1,b, δ ,v) = Some(M2) with b < RM1

(&x), then RM1
(&x) =

RM2
(&x).

Lemma 5.6 (Writing an integer does not modify reachable

set). Suppose thatM1 andM2 are two memory states in the trace of a
well-typed program, such that store(M1,b, δ , Int(n)) = Some(M2).
Then for any variable x , the set of reachable blocs from x is the same

inM1 andM2:

∀x ∈ E, RM1
(&x) = RM2

(&x).

Lemma 5.7 (Maximum extension of a reachable set). IfM1

andM2 are twomemory states such that store(M1,b, δ , Ptr(bv , δv)) =
Some(M2), then the following inclusion is verified:RM2

(a) ⊆ RM1
(a)∪

{b ′ | bv 7→⋆
M1

b ′}.

5.2 Case of Assignments.
We detail the main case of the induction: that of assignments. Given

an execution step ⟨[lv = e;]l ,M1,M1⟩ → (M2,M2) and an obser-

vation memory M ′
1
such that M1 ∼B1

M ′
1
, we want to show the

existence ofM ′
2
such that:

• ⟨[lv = e;]l ,M1,M
′
1
⟩ → (M2,M

′
2
) is a valid execution step

• M2 ∼B2
M ′

2
.

B1 and B2 are defined as:

B1 =
⋃
x ∈livein(l) RM1

(&x)
B2 =

⋃
x ∈liveout (l) RM2

(&x).

The execution step has the following form:

M1 ⊨e e ⇒ v store(M1,bl , δl ,v) = Some(M2)

M1 ⊨lv lv ⇐ (bl , δl) initialize(M1,bl , δl) = M2

⟨[lv = e;]l ,M1,M1⟩ → (M2,M2)

We defineM ′
2
= initialize(M ′

1
,bl , δl), and prove thatM2 ∼B2

M ′
2
. We distinguish between the case where the block written to is

monitored (bl ∈ B2) and the case where it is not.

In both cases we make use of the following relation:

M2 ∼{bl }∁
M1 ∼B1

M ′
1
∼
{bl }∁

M ′
2

(1)

in which the first and last equivalences are derived from Lemma 5.3

and the middle one is an hypothesis of our theorem.

5.2.1 casebl < B2. Let us prove thatB2 ⊆ B1. Since∀ l, livein(l) ⊇
liveout (l), it suffices to show that∀x ∈ liveout (l),RM1

(&x) = RM2
(&x).

Since for any of these sets we have bl < RM2
(&x) we can apply

Lemma 5.5 to conclude.

HILT 2017, November 5-6, 2018, Boston, MA, USA Dara Ly, Nikolai Kosmatov, Julien Signoles, and Frédéric Loulergue

We can now rewrite the assumption bl < B2 as B2 ⊆ {bl }
∁
so

that all domains involved in equation 1 are supersets of B2. The

conclusion follows from Lemma 5.1.

5.2.2 case bl ∈ B2. Using Lemma 5.2, we consider B2 as the (dis-

joint) union of B2\{bl } and {bl }, and we show the equivalence on

each of these subdomains. Here we have to consider the type of the

assigned expression.

subcase int. If the expression has the type int, we can use

Lemma 5.6 to prove that B2 ⊆ B1, using the same method as pre-

viously. Applying Lemma 5.1 to 3 then yields M2 ∼B2\{bl } M ′
2
.

Besides, since bl ∈ B2 ⊆ B1 and M1 ∼B1
M ′

1
we have more

specifically M1 ∼{bl } M ′
1
. By Lemma 5.3 we can conclude that

M2 ∼{bl } M
′
2
.

subcase τ⋆. If the expression is a pointer v = Ptr(bv , δv) for
some (bv , δv), we can use Lemma 5.7 to approximate the evolution

of reachable blocks sets: RM2
(a) ⊆ RM1

(a) ∪ RM1
(e). We consider

the union of these inclusions:

B2 ⊆
⋃

x ∈liveout (l)

RM1
(&x) ∪ RM1

(e). (2)

Let us prove that terms of the right side are both subsets of B1. For

the first one, using the definition ofB1 and the inclusion liveout (l) ⊆
livein(l) we can write⋃

x ∈liveout (l)

RM1
(&x) ⊆

⋃
x ∈livein(l)

RM1
(&x) = B1.

For the second one, we use Lemma 5.4 in conjunction with the

fact that base(e) ∈ livein(l). This corresponds to the first case in

the definition of the generation function gen([lv = e;]), which
is defined by the condition: ∃x ∈ liveout (l), &x 7→⋆

A
lv . This

condition is necessarily verified here: since bl ∈ B2, by definition

of B2 there is some x ∈ liveout (l) such that bl ∈ RM2
(&x). Let bx be

the block allocated for x . By definition ofRM2
(),bx 7→⋆

M2

bl . Finally,

applying the correctness property of the points-to analysis to this

relation yields the expected result: x 7→⋆
A

lv with x ∈ liveout (l).
Now we can deduce from equation 2 that B2 ⊆ B1, and conclude

with the same arguments as for the subcase int.

6 RELATEDWORK
The E-ACSL plugin aims at performing runtime assertion checking

for C code, specified in a rich specification language E-ACSL. Being
a part of the Frama-C framework, it can be combined with other

analyses for quite unique usages. For example, runtime assertion

checking can be used to assist the user in case of proof failures

during deductive verification [21].

E-ACSL can also be used as a dynamic bug finder, see for exam-

ple [25, 29] for a recent comparison of such sanitizers. These tools

implement various techniques, in particular concerning the storage

of metadata necessary for the analysis. There are roughly three

main techniques.

A shadow memory is in linear correspondence with the program

memory. AddressSanitizer [22] stores 1 shadow byte per aligned 8-

byte sequences in the application. Shadowmemory does not incur a

large runtime overhead but its adaptation can be quite tricky when

richer metadata is necessary, as it is the case for E-ACSL [28].

Another technique used to attach additional metadata to each

pointer is the so-called fat pointers technique [1, 20]. There is signif-

icant overhead in this case, and instrumented code cannot directly

be linked with non instrumented code because of differences in

memory layout.

Finally, metadata can be stored in a separate data structure [17].

In a previous version of E-ACSL, metadata was stored in a Patri-

cia trie [15]. This technique allows the instrumented code to be

linked with non instrumented code and to store richer metadata

but execution time overhead may be significant.

Mehlich [17]mentions that “the current implementation of Check-

Pointer could be improved by using static analysis”. Jakobsson et

al. [11] improved E-ACSL by a static analysis (that we formalize in

this paper) in order to avoid monitoring memory locations that do

not need to be monitored. They combine shadow memory (used

for memory locations that only require validity or initialization

checks) with a Patricia trie (for locations requiring more complex

checks). Other sanitizers rely on static analysis to improve the per-

formances of runtime checking [18, 24, 30]. The work that is the

closest to ours in intent and using a proved analysis is CCured [18],

but the techniques are different. CCured is based on fat pointers,

their static analysis is a type system, and only memory safety is

checked. The correctness of the analysis is ensured by a theorem

stating that the execution of an instrumented program can either

terminate correctly or stop because the instrumentation has de-

tected an error, ruling out an incorrect termination because of an

invalid memory access. The proof assumes that there is no dynamic

memory allocation in the program.

Our ultimate goal is to be able to extract a correct E-ACSL-like
plugin from a Coq development. This goal necessitates an imple-

mentation and verification in Coq of the presented static analysis

extended to CompCert C. Our formalization follows the CompCert

memory model [16]. There are several works on the verification

of static analyses with a proof assistant. We only briefly present

some papers related to the Coq proof assistant. The CompCert com-

piler itself contains static analysis for the sake of optimization [2],

including a generic implementation of the Kildall algorithm [13].

This is however related to the RTL language of CompCert. Like Ve-

rasco [12] the presented memory analysis will rather be conducted

at the level of the Cminor language. Unlike Verasco, we plan to

directly implement the analysis as a dataflow analysis rather than

as an abstract interpretation. [9] is a generic formalization of a

solver that can be used for static analysis. However the algorithms

are formalized as relations and cannot be extracted to executable

code. [4] is an extractable dataflow analysis in Coq in the context

of Java.

7 CONCLUSION AND PERSPECTIVES
We have formalized the dataflow analysis underlying a major op-

timization of the E-ACSL tool for runtime assertion checking and

memory debugging. This optimization was shown to bring 60%

to 73% performance savings [11]. The analysis is proved correct

with regard to an operational semantics which reflects the use of a

second memory store to monitor the program memory state.

Soundness of a Dataflow Analysis for Memory Monitoring HILT 2017, November 5-6, 2018, Boston, MA, USA

We believe that making the memory monitoring explicit in the

language semantics (via the so-called observation memory) signif-

icantly eases formal reasoning about optimizations performed at

this level, and can be beneficial in other contexts. We plan to further

explore this notion in our ongoing effort towards a mechanized

formalization of E-ACSL. This future work can be carried out in

three main directions.

First, the core language presented here can be extended to be

more representative of the real E-ACSL language, making the for-

malization wider. Features such as structures and function calls

strongly influence the memory layout of program memory space,

so this would most probably need some adaptation.

Second, this work is still mostly pen-and-paper. We could make

the formalization deeper by porting it to the Coq proof assistant.

Finally, in this work we have assumed that E-ACSL gives the

described semantics to an annotated program by translating anno-

tations into C code, but this translation is not formalized yet. Since

this translation is the core E-ACSL, verifying it has the highest

priority in the global formalization effort of E-ACSL.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for their

helpful comments and feedbacks. This work was partly supported

by project VESSEDIA, which has received funding from the Eu-

ropean Union’s Horizon 2020 Research and Innovation Program

under grant agreement No 731453. The work of the first author was

partially funded by a Ph.D. grant of the French Ministry of Defence.

REFERENCES
[1] Todd M. Austin, Scott E. Breach, and Gurindar S. Sohi. Efficient detection of

all pointer and array access errors. In Programming Languages Design and
Implementation (PLDI). ACM, 1994.

[2] Yves Bertot, Benjamin Grégoire, and Xavier Leroy. A structured approach to

proving compiler optimizations based on dataflow analysis. In Types for Proofs
and Programs (TYPES). Springer, 2006.

[3] Sandrine Blazy and Xavier Leroy. Mechanized semantics for the Clight subset of

the C language. Journal of Automated Reasoning, 43, 2009.
[4] David Cachera, Thomas P. Jensen, David Pichardie, and Vlad Rusu. Extracting a

data flow analyser in constructive logic. Theoretical Computer Science, 342, 2005.
[5] Steve Christey. 2011 CWE/SANS top 25 most dangerous software errors. Techni-

cal Report 1.0.3, The MITRE Corporation, http://www.mitre.org, 2011.

[6] Lori A. Clarke and David S. Rosenblum. A historical perspective on runtime

assertion checking in software development. Software Engineering Notes, 31,
2006.

[7] Loïc Correnson and Julien Signoles. Combining analyses for C program verifica-

tion. In Formal Methods for Industrial Case Studies (FMICS). Springer, 2012.
[8] M. Delahaye, N. Kosmatov, and J. Signoles. Common specification language for

static and dynamic analysis of C programs. In Applied Computing (SAC). ACM,

2013.

[9] Martin Hofmann, Aleksandr Karbyshev, and Helmut Seidl. Verifying a local

generic solver in Coq. In Static Analysis (SAS). Springer, 2010.
[10] Programming languages – C. ISO/IEC 9899:1999, 1999.

[11] Arvid Jakobsson, Nikolai Kosmatov, and Julien Signoles. Fast as a shadow,

expressive as a tree: optimized memory monitoring for C. Science of Computer
Programming, 132, 2016.

[12] Jacques-Henri Jourdan, Vincent Laporte, Sandrine Blazy, Xavier Leroy, and David

Pichardie. A formally-verified C static analyzer. In Principles of Programming
Languages (POPL). ACM, 2015.

[13] Gary A. Kildall. A unified approach to global program optimization. In Principles
of Programming Languages (POPL). ACM, 1973.

[14] F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski. Frama-C:

A software analysis perspective. Formal Aspects of Computing, 27, 2015.
[15] N. Kosmatov, G. Petiot, and J. Signoles. An optimized memory monitoring for

runtime assertion checking of C programs. In Runtime Verification (RV). Springer,
2013.

[16] Xavier Leroy, Andrew W. Appel, Sandrine Blazy, and Gordon Stewart. The

CompCert memory model. In Andrew W. Appel, editor, Program Logics for

Certified Compilers. Cambridge University Press, 2014.

[17] Michael Mehlich. CheckPointer - a C memory access validator. In Source Code
Analysis and Manipulation (SCAM). IEEE, 2011.

[18] G. C. Necula, J. Condit, M. Harren, S. McPeak, andW. Weimer. CCured: Type-safe

retrofitting of legacy software. Programming Languages and Systems (TOPLAS),
27, 2005.

[19] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program
Analysis. Springer-Verlag New York, 1999.

[20] Yutaka Oiwa. Implementation of the memory-safe full ANSI-C compiler. In

Programming Language Design and Implementation (PLDI). ACM, 2009.

[21] Guillaume Petiot, Nikolai Kosmatov, Bernard Botella, Alain Giorgetti, and Jacques

Julliand. Your proof fails? Testing helps to find the reason. In Tests and Proofs
(TAP). Springer, 2016.

[22] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov. AddressSanitizer: a

fast address sanity checker. In USENIX Annual Technical Conference (USENIX).
USENIX Association, 2012.

[23] Julien Signoles, Nikolai Kosmatov, and Kostyantyn Vorobyov. E-ACSL, a runtime

verification tool for safety and security of C programs. tool paper. In Competitions,
Usability, Benchmarks, Evaluation, and Standardisation for Runtime Verification
Tools (RV-CuBES). EasyChair, 2017.

[24] Matthew S. Simpson and Rajeev Barua. MemSafe: ensuring the spatial and

temporal memory safety of C at runtime. Software: Practice and Experience, 43,
2013.

[25] Dokyung Song, Julian Lettner, Prabhu Rajasekaran, Yeoul Na, Stijn Volckaert, Per

Larsen, and Michael Franz. SoK: sanitizing for security. In Security and Privacy
(S&P). IEEE, 2019. to appear.

[26] Mark Sullivan and Ram Chillarege. Software defects and their impact on system

availability: a study of field failures in operating systems. In Fault Tolerant
Computing (FTCS). IEEE, 1991.

[27] Victor van der Veen, Nitish dutt Sharma, Lorenzo Cavallaro, and Herbert Bos.

Memory errors: the past, the present, and the future. In Research in Attacks,
Intrusions, and Defenses (RAID). Springer, 2012.

[28] Kostyantyn Vorobyov, Julien Signoles, and Nikolai Kosmatov. Shadow state en-

coding for efficient monitoring of block-level properties. InMemory Management
(ISMM). ACM, 2017.

[29] Kostyantyn Vorobyov, Nikolai Kosmatov, and Julien Signoles. Detection of

security vulnerabilities in C code using runtime verification: an experience report.

In Tests and Proofs (TAP). Springer, 2018.
[30] Jun Yuan and Rob Johnson. CAWDOR: compiler assisted worm defense. In Source

Code Analysis and Manipulation (SCAM). IEEE, 2012.

http://www.mitre.org

HILT 2017, November 5-6, 2018, Boston, MA, USA Dara Ly, Nikolai Kosmatov, Julien Signoles, and Frédéric Loulergue

A APPENDIX
This appendix contains a detailed soundness proof of our dataflow

analysis. Section B recalls the formal statement of the theorem and

presents the global structure of the proof. Section C lists the lemmas

used along the proof; they are stated informally, and only the main

idea of their proof is given. Please note that they numbering differs

from the one used in the article body. The remaining sections detail

all the cases of the induction:

• memory operations, which represent the main difficulty of

this proof, are tackled in Section D

• Section E includes the others cases of execution in which

the program immediately terminates

• Section F handles control-flow related statements.

B THEOREM STATEMENT AND PROOF
STRUCTURE

Immediate Termination. Let ⟨s,M1,M1⟩ → (M2,M2) be an ex-

ecution step, and let M ′
1
be an observation memory such that

M1 ∼B1
M ′

1
, with B1 =

⋃
x ∈livein(I(s)) RM1

(&x).

Then there exists M ′
2
such that ⟨s,M1,M

′
1
⟩ → (M2,M

′
2
) and

M2 ∼B2
M ′

2
, with B2 =

⋃
x ∈liveout (I(s)) RM2

(&x).

Continued Evaluation. Let ⟨s1,M1,M1⟩ → ⟨s2,M2,M2⟩ be an

execution step, and let M ′
1
be an observation memory such that

M1 ∼B1
M ′

1
, with B1 =

⋃
x ∈livein(I(s1)) RM1

(&x).

Then there existsM ′
2
such that ⟨s1,M1,M

′
1
⟩ → ⟨s2,M2,M

′
2
⟩ and

M2 ∼B2
M ′

2
, with B2 =

⋃
x ∈livein(I(s2)) RM2

(&x).

B.1 Structure of the Proof
The proof is by induction on the structure of the evaluation deriva-

tion. The most difficult cases are statements that perform memory

operations, namely assignment, allocation and deallocation. The

other cases are straightforward.

C INTERMEDIATE LEMMAS
C.1 Properties of ∼B

Lemma C.1 (Eqivalence Relation). ∀X , ∼X is an equivalence
relation on observation memories.

Lemma C.2 (Domain Restriction). If M1 ∼X M2 and Y ⊆ X

thenM1 ∼Y M2

Lemma C.3 (Domain Union). IfM1 ∼X M2 andM1 ∼Y M2 then
M1 ∼X∪Y M2.

The above properties are a direct consequence of the definition

of ∼B , whereas the following lemmas use the axiomatic properties

of observation memory.

Lemma C.4 (Eqivalence Preservation (initialization)). For
a given domain B, two equivalent memories remain equivalent when
the same initialize operation is performed on both.

Lemma C.5 (Eqivalence Preservation (block storage)). For
a given domain B, two equivalent memories remain equivalent when
the same store_block operation is performed on both.

LemmaC.6 (Eqivalence Preservation (block deletion)). For
a given domain B, two equivalent memories remain equivalent when
the same delete_block operation is performed on both.

C.2 Properties of base()
Variable Address. The base address of any memory location is

the address of a given variable: ∀a, ∃x, base(a) = &x .
Consequently, if we consider a trace of a given program, a base

address always evaluates to the same block ; that is, the block

pointed to by the base address does not depend on the point of the

trace where the evaluation takes place.

LemmaC.7 (Reachability from base address). Any block reach-
able from a given memory location a is also reachable from its base
address:

∀a ∈ Memval, ∀M, RM (a) ⊆ RM (&base(a)).

Proof: by induction on the structure of a.

C.3 Evolution of RM (&x) when writing inM
The following lemmas describe the behavior of reachable blocks

sets under memory updates. They are best understood by viewing

the memory as a directed graph with blocks as vertices and pointers

defining edges. From this point of view, the fact that successors

of a block are always in the same reachable set as this block itself

makes the proof of these lemmas straightforward.

Lemma C.8 (Writing outside of a reachable set does not

modify it). Let x be a variable. For a given memory state M1, if
store(M1,b, δ ,v) = Some(M2) with b < RM1

(&x), then

RM1
(&x) = RM2

(&x).

Lemma C.9 (Writing an integer does not modify reachable

set). Suppose thatM1 andM2 are two memory states in the trace of a
well-typed program, such that store(M1,b, δ , Int(n)) = Some(M2).
Then for any variable x , the set of reachable blocs from x is the same
inM1 andM2:

∀x ∈ E, RM1
(&x) = RM2

(&x).

Lemma C.10 (Maximum extension of a reachable set). IfM1

andM2 are two memory states such that

store(M1,b, δ , Ptr(bv , δv)) = Some(M2),

then the following inclusion is verified:

RM2
(a) ⊆ RM1

(a) ∪ {b ′ | bv 7→⋆
M1

b ′}

D MEMORY OPERATIONS
Let ⟨s,M1,M1⟩ → (M2,M2) be an execution step, and letM ′

1
be an

observationmemory such thatM1 ∼B1
M ′

1
, withB1 =

⋃
x ∈livein(I(s)) RM1

(&x).

We want to show that there existsM ′
2
such that ⟨s,M1,M

′
1
⟩ →

(M2,M
′
2
) andM2 ∼B2

M ′
2
, with B2 =

⋃
x ∈liveout (I(l)) RM2

(&x).

D.1 Assignment
The execution step has the form:

Soundness of a Dataflow Analysis for Memory Monitoring HILT 2017, November 5-6, 2018, Boston, MA, USA

Eval-assign

Γ ⊢e e : τ
M1 ⊨e e ⇒ v store(M1,bl , δl ,v) = Some(M2)

M1 ⊨lv lv ⇐ (bl , δl) initialize(M1,bl , δl) = M2

⟨[lv = e;]l ,M1,M1⟩ → (M2,M2)

We defineM ′
2
= initialize(M ′

1
,bl , δl), and prove thatM2 ∼B2

M ′
2
. We distinguish between the case where the block written to is

monitored (bl ∈ B2) and the case where it is not.

In each of these cases we make use of the following assumption

M2 ∼{bl }∁
M1 ∼B1

M ′
1
∼
{bl }∁

M ′
2

(3)

in which the first and last equivalences are derived from Lemma C.4

and the middle one is an hypothesis of our theorem.

D.1.1 casebl < B2. Let us prove thatB2 ⊆ B1. Since∀ l, livein(l) ⊇
liveout (l), it suffices to show that∀x ∈ liveout (l),RM1

(&x) = RM2
(&x).

Since for any of these sets we have bl < RM2
(&x) we can apply

Lemma C.8 to conclude.

We can now rewrite the assumption bl < B2 as B2 ⊆ {bl }
∁

so that the all domains involved in 3 are supersets of B2. The

conclusion follows from Lemma C.2.

D.1.2 case bl ∈ B2. Using Lemma C.3, we consider B2 as the

(disjoint) union of B2\{bl } and {bl }, and we show the equivalence

on each of these subdomains. Here we have to consider the type of

the assigned expression.

subcase int. If the expression has the type int, we can use

Lemma C.9 to prove that B2 ⊆ B1, using the same method as pre-

viously. Applying Lemma C.2 to 3 then yields M2 ∼B2\{bl } M ′
2
.

Besides, since bl ∈ B2 ⊆ B1 and M1 ∼B1
M ′

1
we have more

specifically M1 ∼{bl } M ′
1
. By Lemma C.4 we can conclude that

M2 ∼{bl } M
′
2
.

subcase τ⋆. If the expression is a pointer v = Ptr(bv , δv) for
some (bv , δv), we can use Lemma C.10 to approximate the evolution

of reachable blocks sets: RM2
(a) ⊆ RM1

(a) ∪ RM1
(e). We consider

the union of these inclusions:

B2 ⊆
⋃

x ∈liveout (l)

RM1
(&x) ∪ RM1

(e). (4)

Let us prove that terms of the right side are both subsets of B1.

For the first one, using the definition of B1 and the inclusion

liveout (l) ⊆ livein(l) we can write⋃
x ∈liveout (l)

RM1
(&x) ⊆

⋃
x ∈livein(l)

RM1
(&x) = B1.

For the second one, we use Lemma C.7 in conjunction with the

fact that base(e) ∈ livein(l). This corresponds to the first case in

the definition of the generation function gen([lv = e;]), which
is defined by the condition: ∃x ∈ liveout (l), &x 7→⋆

A
lv . This

condition is necessarily verified here: since bl ∈ B2, by definition

of B2 there is some x ∈ liveout (l) such that bl ∈ RM2
(&x). Let bx be

the block allocated for x . By definition ofRM2
(),bx 7→⋆

M2

bl . Finally,

applying the correctness property of the points-to analysis to this

relation yields the expected result: x 7→⋆
A

lv with x ∈ liveout (l).

Now we can deduce from 4 that B2 ⊆ B1, and conclude with the

same arguments as for the subcase int.

D.2 Allocation
Eval-malloc

store_block(M1,b, lo,hi) = M3

hi − lo = n initialize(M3,bl , δl) = M2

M ⊨e e ⇒ Int(n) alloc(M1, lo,hi) = (b,M3)

M ⊨
lv
lv ⇐ (bl , δl) store(M3,bl , δ , Ptr(b, 0)) = Some(M2)

⟨[lv = malloc(e);]l ,M1,M1⟩ → (M2,M2)

Although the allocation is syntactically an atomic statement, it

is actually the composition of two memory operations: the allo-

cation in the true sense of the word, followed by the assignment

of a pointer to the newly allocated block. It is therefore natural to

introduce an intermediate state in which the new block is allocated,

but the left value is not pointing to it yet.

Accordingly, we pose the following definitions:

M ′
3
= store_block(M ′

1
,b, lo,hi)

M ′
2
= initialize(M3,bl , δl)

B3 =
⋃
x ∈livein(l) RM3

(&x)

We proceed in two steps:

(1) proveM3 ∼B3
M ′

3

(2) use the previous equivalence to proveM ′
2
∼B2

M2.

D.2.1 Equivalence on intermediate state. Since M3 is simply M1

with a new block and no pointer to this block, reachable sets are

the same in both memories. Consequently,

∀x ∈ livein(l), RM1
(&x) = RM3

(&x)

and thus B3 = B1.

SinceM1 ∼B1
M ′

1
and the same allocation is performed on both

memories, by Lemma C.5 the equivalence is preserved:M3 ∼B1
M ′

3
.

B1 and B3 being equal, the conclusion follows.

D.2.2 Equivalence on final state. This setting is very similar to the

case of a pointer assignment (which is only natural since a pointer

assignment is indeed performed after the allocation of a new block).

We want to proveM2 ∼B2
M ′

2
, assuming the equivalence on the

intermediate state:M3 ∼B3
M ′

3
. b being a freshly allocated block in

bothM3 andM
′
3
, we haveM3 ∼{b } M

′
3
, which means that we can

extend the equivalence domain by using Lemma C.3:

M3 ∼B3∪{b } M
′
3
.

case bl < B3. Then by Lemma C.8, ∀x ∈ livein(l), RM3
(&x)

is unaffected by the write at bl , so B3 = B2. We can thus use

Lemma C.4 to transfer the equivalence to the next program state:

M2 ∼B3∪{b } M
′
2
. To conclude, we use the domain equality B3 = B2

and restrict the domain back to B2 by Lemma C.2.

case bl ∈ B3. By Lemma C.10, ∀x ∈ livein(l), RM2
(&x) ⊆

RM3
(&x) ∪ {b}. Considering the union on all x ∈ livein(l) we get:

B2 ⊆ B3 ∪ {b}. Conclusion follows by Lemma C.4.

HILT 2017, November 5-6, 2018, Boston, MA, USA Dara Ly, Nikolai Kosmatov, Julien Signoles, and Frédéric Loulergue

D.3 Deallocation
Eval-free

M1 ⊨e a ⇒ (b, 0)

free(M1,b) = Some(M2) delete_block(M1,b) = M2

⟨[free(a);]l ,M1,M1⟩ → (M2,M2)

M2 is obtained by deleting one block from M1 so the connec-

tivity between blocks inM2 is necessarily lower than inM1. More

formally, for any variable x , RM2
(&x) ⊆ RM1

(&x). Since livein(l) ⊇
liveout (l) by definition of the transfer function, this impliesB1 ⊇ B2.

Therefore, by domain restriction (Lemma C.2), M1 ∼B2
M ′

1
. Con-

clusion follows from Lemma C.6.

E OTHER CASES OF IMMEDIATE
TERMINATION

E.1 Skip
eval-skip

⟨skip,M1,M1⟩ → (M1,M1)

The memory state and the equivalence domain are the same

before and after the statement execution, so the equivalence is

trivially preserved.

E.2 End of a loop

Eval-whileEnd

M ⊨e e ⇒ Int(0)

⟨while ([e]l) s,M,M⟩ → (M,M)

By definition of the functions (livein, liveout), livein(l) ⊇ liveout (l).
Since the memory is unchanged, this implies B1 ⊇ B2. Conclude

by Lemma C.2.

E.3 Assertion

Eval-assert

M ⊨p p ⇒ ⊤

⟨/∗@ assert [p]l ; ∗/ ,M,M⟩ → (M,M)

livein(l) ⊇ liveout (l) = livein(I(s)) by definition of the analysis.

Since the memory is unchanged, this implies B1 ⊇ B2 and we

conclude with Lemma C.2.

F CASES OF CONTINUED EXECUTION
Let ⟨s1,M1,M1⟩ → ⟨s2,M2,M2⟩ be an execution step, and let M ′

1

be an observation memory such that M1 ∼B1
M ′

1
, with B1 =⋃

x ∈livein(I(s1)) RM1
(&x).

We want to show that there existsM ′
2
such that ⟨s1,M1,M

′
1
⟩ →

⟨s2,M2,M
′
2
⟩ andM2 ∼B2

M ′
2
, with B2 =

⋃
x ∈livein(I(s2)) RM2

(&x).
The case addressed in this section are that of execution steps

which do not terminate immediately; these cases correspond to

the statements defining the program’s control flow. Since these

statements do not modify any of the memory stores, the reachable

blocks sets are the same before and after the statement execution.

Therefore, in order to prove some domain inclusion B1 ⊇ B2,

it suffices to prove the corresponding live variable sets inclusion

livein(I(s1)) ⊇ livein(I(s2)). In all the following cases, this inclu-

sion is a direct consequence of the relation between the dataflow

analysis result (livein, liveout) and the CFG structure, or in other

words the fact that (livein, liveout) is the least fixed point of the

system defining it.

F.1 Sequence
There are two subcases: either the first statement is a single, atomic

statement (assignement, allocation. . .), or it is a composed statement

(loop, sequence, conditional. . .).

F.1.1 Subcase eval-seqEnd.
eval-seqEnd

⟨s1,M1,M1⟩ → (M2,M2)

⟨s1 s2,M1,M1⟩ → ⟨s2,M2,M2⟩

liveout (I(s1)) ⊇ livein(I(s2) by definition of the analysis, so

B ⊇ B2 and we can restrict the equivalence to B2 by Lemma C.2:

M2 ∼B2
M ′

2
. We conclude by replacingM2 withM ′

2
in the evalua-

tion derivation:

⟨s1,M1,M
′
1
⟩ → (M2,M

′
2
)

⟨s1 s2,M1,M
′
1
⟩ → ⟨s2,M2,M

′
2
⟩

F.1.2 Subcase eval-seqCont.
eval-seqCont

⟨s1,M1,M1⟩ → ⟨ŝ1,M2,M2⟩

⟨s1 s2,M1,M1⟩ → ⟨ŝ1 s2,M2,M2⟩

The proof is the same as in the previous case, substituting livein(I(ŝ1))
for liveout (I(s1)).

F.2 Conditional Branching

Eval-ifTrue

M ⊨e e ⇒ Int(n) n , 0

⟨if ([e]l) then st else sf ,M,M⟩ → ⟨st ,M,M⟩

Eval-ifFalse

M ⊨e e ⇒ Int(0)

⟨if ([e]l) then st else sf ,M,M⟩ → ⟨sf ,M,M⟩

HereM1,M
′
1
,M2, andM

′
2
are all equal (toM). Therefore it suffices

to show that B1 ⊇ B2, that is:⋃
x ∈livein(l)

RM (&x) =
⋃

x ∈livein(I(s))

RM (&x)

where s is st or sf , depending on the case. This follows directly

from:

livein(l) ⊇ livein(I(st)) ∪ livein(I(sf))
(definition of the transfer function).

F.3 Loop

Eval-whileCont

M ⊨e e ⇒ Int(n) n , 0

⟨while ([e]l) s,M,M⟩ → ⟨s while ([e]l) s,M,M⟩

Since there no memory operation is performed, is suffices to

show the inclusion: livein(l) ⊇ livein(I(s while (e) s)). Applying the
definition of I to the right hand side, we have I(s while (e) s)) =
I(s), so that we are left to prove:

livein(l) ⊇ livein(I(s))

which results from the definition of (livein, liveout).

	Abstract
	1 Introduction
	2 Motivating Example
	3 Language Definition
	3.1 Operational semantics

	4 Dataflow Analysis
	4.1 Definition
	4.2 Correctness

	5 Proof Outline
	5.1 Lemmas.
	5.2 Case of Assignments.

	6 Related Work
	7 Conclusion and Perspectives
	Acknowledgments
	References
	A Appendix
	B Theorem Statement and Proof Structure
	B.1 Structure of the Proof

	C Intermediate Lemmas
	C.1 Properties of B
	C.2 Properties of base ()
	C.3 Evolution of RM(&x) when writing in M

	D Memory operations
	D.1 Assignment
	D.2 Allocation
	D.3 Deallocation

	E Other cases of immediate termination
	E.1 Skip
	E.2 End of a loop
	E.3 Assertion

	F Cases of continued execution
	F.1 Sequence
	F.2 Conditional Branching
	F.3 Loop

