H. F. Abouziena, A. A. Omar, S. D. Sharma, and M. Singh, Efficacy comparison of some new natural-product herbicides for weed control at two growth stages, Weed Technol, vol.23, pp.431-437, 2009.

S. Agehara and D. I. Leskovar, , 2012.

S. Agehara and D. I. Leskovar, , 2014.

K. Asada, Production and scavenging of reactive oxygen species in chloroplasts and their functions, Plant Physiol, vol.141, pp.391-396, 2006.

W. J. Van-berkel, N. M. Kamerbeek, and M. W. Fraaije, Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts, 2006.

, Biotechnol, vol.124, pp.670-689

A. Blum, , 2017.

C. Bolle, The role of GRAS proteins in plant signal transduction and development, Planta, vol.218, pp.683-692, 2004.

K. X. Chan, S. Y. Phua, P. Crisp, R. Mcquinn, and B. J. Pogson, Learning the languages of the chloroplast: retrograde signaling and beyond, Annu. Rev. Plant Biol, vol.67, pp.25-53, 2016.

M. M. Chaves, J. P. Maroco, and J. S. Pereira, Understanding plant responses to drought -from genes to the whole plant, Funct. Plant Biol, vol.30, pp.239-264, 2003.

W. Chi, P. Feng, J. Ma, and L. Zhang, Metabolites and chloroplast retrograde signaling, Curr. Opin. Plant Biol, vol.25, pp.32-38, 2015.

A. J. Dickinson, K. Lehner, J. Mi, K. Jia, M. Mijar et al., b-cyclocitral is a conserved root growth regulator, Proc. Natl. Acad. Sci. U S A, vol.116, pp.10563-10567, 2019.

J. Dunn, L. Hunt, M. Afsharinafar, M. Al-meselmani, A. Mitchell et al., Reduced stomatal density in bread wheat leads to increased water-use efficiency, J. Exp. Bot, 2019.

S. D'alessandro and M. Havaux, Sensing b-carotene oxidation in photosystem II to master plant stress tolerance, New Phytol, vol.223, pp.1776-1783, 2019.

S. D'alessandro, B. Ksas, and M. Havaux, Decoding ß-cyclocitral-mediated retrograde signaling reveals the role of a detoxification response in plant tolerance to photooxidative stress, Plant Cell, vol.30, pp.2495-2511, 2018.

G. M. Estavillo, P. A. Crisp, W. Pornsiriwong, M. Wirtz, D. Collinge et al., Evidence for a SAL1-PAP chloroplast retrograde pathway that functions in drought and high light signaling in Arabidopsis, Plant Cell, vol.23, pp.3992-4012, 2011.

M. Farooq, A. Wahid, N. Kobayashi, D. Fujita, and S. M. Basra, A. Plant drought stress: effects, mechanisms and management, Agron. Sustain. Dev, vol.29, pp.185-212, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00725357

K. N. Ferreira, T. M. Iverson, K. Maghlaoui, J. Barber, and S. Iwata, Architecture of the photosynthetic oxygen-evolving center, Science, vol.303, pp.1831-1838, 2004.

B. Fode, T. Siemsen, C. Thurow, R. Weigel, and C. Gatz, The Arabidopsis GRAS protein SCL14 interacts with class II TGA transcription factors and is essential for the activation of stressinducible promoters, Plant Cell, vol.20, pp.3122-3135, 2008.

A. Harb, A. Krishnan, M. M. Ambavaram, and A. Pereira, Molecular and Physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth, Plant Physiol, vol.154, pp.1254-1271, 2010.

T. Kim, J. Y. Hwang, Y. S. Kim, S. H. Joo, S. C. Chang et al.,

, Arabidopsis CYP85A2, a cytochrome P450, mediates the Baeyer-Villiger oxidation of castasterone to brassinolide in brassinosteroid biosynthesis, Plant Cell, vol.17, pp.2397-2412

J. M. Kim, T. K. To, A. Matsui, K. Tanoi, N. I. Kobayashi et al., , 2017.

, Acetate-mediated novel survival strategy against drought in plants, Nat. Plants, vol.3, p.17097

E. Koh, R. Carmieli, A. Mor, and R. Fluhr, Singlet oxygen-induced membrane disruption and serpin-protease balance in vacuolar-driven cell death, Plant Physiol, vol.171, pp.1616-1625, 2016.

A. Krieger-liszkay, C. Fufezan, and A. Trebst, Singlet oxygen production in photosystem II and related protection mechanism, Photosynth. Res, vol.98, pp.551-564, 2008.

K. P. Lee, C. Kim, F. Landgraf, A. , and K. ,

, EXECUTER1-and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana, Proc. Natl. Acad. Sci. U S A, vol.104, pp.10270-10275

J. Leung, S. Merlot, and J. Giraudat, The Arabidopsis ABSCISIC ACID-INSENSITIVE2, 1997.

Z. Li, S. Wakao, B. B. Fischer, and K. K. Niyogi, Sensing and responding to excess light, 2009.

, Annu. Rev. Plant Biol, vol.60, pp.239-260

P. L. Lu, N. Z. Chen, R. An, Z. Su, B. S. Qi et al., A novel droughtinducible gene, ATAF1, encodes a NAC family, 2007.

A. Meguro and Y. Sato, , 2014.

S. Merlot, N. Leonhardt, F. Fenzi, C. Valon, M. Costa et al., , 2007.

, EMBO J, vol.26, pp.3216-3226

S. Munemasa, F. Hauser, J. Park, R. Waadt, B. Brandt et al., , 2015.

D. Nguyen, I. Rieu, C. Mariani, and N. M. Van-dam, How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory, Plant Mol. Biol, vol.91, pp.727-740, 2016.

M. Okamoto, F. C. Peterson, A. Defries, S. Y. Park, A. Endo et al., Activation of dimeric ABA receptors elicits guard cell closure, ABAregulated gene expression, and drought tolerance, Proc. Natl. Acad. Sci. U S A, vol.110, pp.12132-12137, 2013.

A. Ouchi, K. Aizawa, Y. Iwasaki, T. Inakuma, J. Terao et al., Kinetic study of the quenching reaction of singlet oxygen by carotenoids and food extracts in solution, 2010.

, J. Agric. Food Chem, vol.58, pp.9967-9978

A. Pinnola and R. Bassi, Molecular mechanisms involved in plant photoprotection, Biochem. Soc. Trans, vol.46, pp.467-482, 2018.

P. Pospí-sil, P. , and A. , Formation of singlet oxygen and protection against its oxidative damage in Photosystem II under abiotic stress, J. Photochem. Photobiol. B Biol, vol.137, pp.39-48, 2014.

G. S. Premachandra, H. Saneoka, M. Kanaya, and S. Ogata, Cell membrane stability and leaf surface wax content as affected by increasing water deficits in maize, J. Exp. Bot, vol.42, pp.167-171, 1991.

F. Ramel, S. Birtic, C. Ginies, L. Soubigoutaconnat, C. Triantaphylidè-s et al., Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants, Proc. Natl. Acad. Sci. U S A, vol.109, pp.5535-5540, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01335774

F. Ramel, S. Birtic, S. Cuiné, C. Triantaphylidè-s, J. L. Ravanat et al., Chemical quenching of singlet oxygen by Carotenoids in plants, Plant Physiol, vol.158, pp.1267-1278, 2012.

M. Renz and B. Meunier, 100 years of Baeyer-Villiger oxidations, Eur. J. Org. Chem, pp.737-750, 1999.

Y. Sakuma, K. Maruyama, F. Qin, Y. Osakabe, K. Shinozaki et al., Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression, Proc. Natl. Acad. Sci. U S A, vol.103, pp.18822-18827, 2006.

N. Shao, G. Y. Duan, and R. A. Bock, Mediator of singlet oxygen responses in Chlamydomonas reinhardtii and Arabidopsis identified by a Luciferase-based genetic screen in algal cells, Plant Cell, vol.25, pp.4209-4226, 2013.

L. Shumbe, R. Bott, and M. Havaux, , 2014.

, Dihydroactinidiolide, a high light-induced b-carotene derivative that can regulate gene expression and photoacclimation in Arabidopsis

, Mol. Plant, vol.7, pp.1248-1251

L. Shumbe, S. D'alessandro, N. Shao, A. Chevalier, B. Ksas et al., , 2017.

, METHYLENE BLUE SENSITIVITY 1 (MBS1) is required for acclimation of Arabidopsis to singlet oxygen and acts downstream of b-cyclocitral, Plant Cell Environ, vol.40, pp.216-226

A. Strand, T. Asami, J. Alonso, J. R. Ecker, and J. Chory, Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrinIX, Nature, vol.421, pp.79-83, 2003.

S. P. Stratton, W. H. Schaefer, and D. C. Liebler, Isolation and identification of singlet oxygen oxidation products of beta-carotene, 1993.

, Chem. Res. Toxicol, vol.6, pp.542-547

A. Telfer, Singlet oxygen production by PSII under light stress: mechanism, detection and the protective role of b-carotene, Plant Cell. Physiol, vol.55, pp.1216-1223, 2014.

K. Tomita, M. Hasegawa, S. Arii, K. Tsuji, B. Bober et al., Characteristic oxidation behavior of b-cyclocitral from the cyanobacterium Microcystis, Environ. Sci. Pollut. Res, vol.23, pp.11998-12006, 2016.

J. N. Tripathy, J. Zhang, S. Robin, T. T. Nguyen, and H. T. Nguyen, QTLs for cell-membrane stability mapped in rice (Oryza sativa L.) under drought stress, Theor. Appl. Genet, vol.100, pp.1197-1202, 2000.

T. Umezawa, M. Fujita, Y. Fujita, K. Yamaguchishinozaki, and K. Shinozaki, Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future, Curr. Opin. Biotechnol, vol.17, pp.113-122, 2006.

B. Wang, H. Du, Z. Zhang, W. Xu, and X. Deng, BhbZIP60 from resurrection plant Boea hygrometrica is an mRNA splicing-activated endoplasmic reticulum stress regulator involved in drought tolerance, Front. Plant Sci, vol.8, p.245, 2017.

A. Wasaya, X. Zhang, Q. Fang, Y. , Z. Waterland et al., Abscisic acid applications decrease stomatal conductance and delay wilting in drought-stressed chrysanthemums, Horttechnology, vol.20, pp.896-901, 2010.

L. Wei, L. Wang, Y. Yang, P. Wang, T. Guo et al., Abscisic acid enhances tolerance of wheat seedlings to drought and regulates transcript levels of genes encoding ascorbateglutathione biosynthesis, Front. Plant Sci, vol.6, p.458, 2015.

J. D. Woodson, J. M. Perez-ruiz, and J. Chory, Heme synthesis by plastid ferrochelatase I regulates nuclear gene expression in plants, Curr. Biol, vol.21, pp.897-903, 2011.

L. Xiong, M. Ishitani, and J. Zhu, Interaction of osmotic stress, temperature, and abscisic acid in the regulation of gene expression in Arabidopsis, Plant Physiol, vol.119, pp.205-212, 1999.

K. Xu, S. Chen, T. Li, X. Ma, X. Liang et al., OsGRAS23, a rice GRAS transcription factor gene, is involved in drought stress response through regulating expression of stress-responsive genes, BMC Plant Biol, vol.15, p.141, 2015.

K. Yamaguchi-shinozaki and K. Shinozaki, Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic (10 ?g). After centrifugation, the supernatant was collected, 1993.

. Ramel, The mass spectrum of ?-CCA can be found in, MS. ?-CC and ?-CCA were quantified on the most probable ion (m/z 137 and 153, respectively, 2012.

, Stomatal conductance measurement by IRGA were performed with a LI-COR 6400

N. E. Lincoln, USA) equipped with a clamp-on leaf cuvette (6400-40 Leaf Chamber Fluorometer

L. Inc, Leaf temperature was maintained at 22 °C, and leaf-to-air VPD was at 2 kPa. A 10%

, For measuring the turgid weight (TW), samples were submerged with bi-distilled water and left at 4°C for 16 hours

. Bajji, Six leaves per condition were cut from ?-CCA-treated or -untreated plants and weighted (FW), and placed in 25 ml of bi-distilled water. Conductivity of the and Psypro control unit (Wescor, 1992.

, Total RNA was isolated from 100 mg leaves using the Nucleospin® RNA Plant kit (Macherey-Nagel). The concentration was measured on a NanoDrop2000, RNA isolation and qRT-PCR

, 10 µM each of forward and reverse primers and water, was added to 2 µL of a 10-fold diluted cDNA sample in a 384 well plate, Lightcycler 480 Real-Time PCR system

, The PCR program used was: 95 °C for 10 min, p.45

, Profilin-1 (PRF1, AT2G19760) and Cyclophilin 5 (CYP5, AT2G29960and Skoog medium (MS -½) supplemented with 0.5 g/L MES-KOH pH 5.7, 0.8 % Plant Agar (Duchefa)

. Kcl, 10 mM Mes/Tris, pH 6). Stomata were analyzed by using an inverted microscope (Leica LMD-6000)

M. Bajji, J. Kinet, and L. S. , , 2002.

J. I. García-plazaola, M. Portillo-estrada, B. Fernández-marín, A. Kännaste, and Ü. Niinemets,

, Environ. Exp. Bot, vol.133, pp.87-97

S. B. Kikuta and H. Richter, Leaf discs or press saps? A comparison of techniques for the determination of osmotic potentials in freeze-thawed leaf material, J. Exp. Bot, vol.43, pp.1039-1044, 1992.

F. Ramel, S. Birtic, C. Ginies, L. Soubigou-taconnat, C. Triantaphylidès et al.,

K. Tomita, M. Hasegawa, S. Arii, K. Tsuji, B. Bober et al., Characteristic oxidation behavior of ?-cyclocitral from the cyanobacterium Microcystis, Environ. Sci. Pollut, 2016.

. Res, , vol.23, pp.11998-12006