Skip to Main content Skip to Navigation
Journal articles

Epitaxy of Si-Ge-Sn-based heterostructures for CMOS-integratable light emitters

Abstract : The recent rise of GeSn-based optically pumped lasers have multiplied the efforts to fabricate a fully CMOS compatible and group IV-based light emitter. Their integration with Si-based electronics may yield heavily reduced power consumption in integrated circuits and pave the way towards new sensing or medical applications. Here, we discuss the epitaxy of group IV GeSn and SiGeSn semiconductors and show their suitability for light emitting applications. Double and multi quantum well heterostructures are evaluated, whereby the latter enables an inherently easier control over the formation of deleterious misfit defects. Consequently, microdisk lasers fabricated from those show greatly enhanced light emission and reduced lasing thresholds. The use of in-situ p-i-n doping schemes allow the formation of light emitting diodes, resulting in electrically-enabled light emission already at room temperature.
Document type :
Journal articles
Complete list of metadatas

https://hal-cea.archives-ouvertes.fr/cea-02186473
Contributor : Marianne Leriche <>
Submitted on : Wednesday, July 17, 2019 - 12:22:18 PM
Last modification on : Thursday, June 11, 2020 - 5:04:09 PM

Identifiers

Collections

Citation

Nils von den Driesch, Daniela Stange, Denis Rainko, Uwe Breuer, Giovanni Capellini, et al.. Epitaxy of Si-Ge-Sn-based heterostructures for CMOS-integratable light emitters. Solid-State Electronics, Elsevier, 2019, 155, pp.139-143. ⟨10.1016/j.sse.2019.03.013⟩. ⟨cea-02186473⟩

Share

Metrics

Record views

82