A. N. Tikhonov, pH-dependent regulation of electron transport and ATP synthesis in chloroplasts, Photosynth. Res, vol.116, pp.511-534, 2013.

J. D. Rochaix, Regulation of photosynthetic electron transport, Biochim. Biophys. Acta, vol.1807, pp.375-383, 2011.

F. J. Van-eerden, M. N. Melo, P. Frederix, X. Periole, and S. J. Marrink, Exchange pathways of plastoquinone and plastoquinol in the photosystem II complex, Nat. Commun, vol.8, p.15214, 2017.

A. Block, Functional modeling identifies paralogous solanesyldiphosphate synthases that assemble the side chain of plastoquinone-9 in plastids, J. Biol. Chem, vol.288, pp.27594-27606, 2013.

J. Kruk and S. Karpinski, An HPLC-based method of estimation of the total redox state of plastoquinone in chloroplasts, the size of the photochemically active plastoquinone-pool and its redox state in thylakoids of Arabidopsis, Biochim. Biophys. Acta, vol.1757, pp.1669-1675, 2006.

P. Joliot and A. Joliot, Cyclic electron flow in C3 plants, Biochim. Biophys. Acta, vol.1757, pp.362-368, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01934417

K. J. Van-wijk and F. Kessler, Plastoglobuli: plastid microcompartments with integrated functions in metabolism, Annu. Rev. Plant Biol, vol.68, pp.253-289, 2017.

J. Kruk, R. Szymanska, J. Cela, and S. Munne-bosch, Plastochromanol-8: fifty years of research, Phytochemistry, vol.108, pp.9-16, 2014.

G. M. Giacometti, R. Barbato, S. Chiaramonte, G. Friso, and F. Rigoni, Effects of ultraviolet-B radiation on photosystem II of the cyanobacterium Synechocystis sp. PCC 6083, Eur. J. Biochem, vol.242, pp.799-806, 1996.

A. Trebst and E. Pistorius, Photosynthetische reaktionen in UV-bestrahlten chloroplasten, Z. für Naturforschung B, vol.20, pp.885-889, 1965.

B. Ksas, N. Becuwe, A. Chevalier, and M. Havaux, Plant tolerance to excess light energy and photooxidative damage relies on plastoquinone biosynthesis, Sci. Rep, vol.5, p.10919, 2015.

B. Ksas, The plastoquinone pool outside the thylakoid membrane serves in plant photoprotection as a reservoir of singlet oxygen scavengers, Plant Cell Environ, vol.41, pp.2277-2287, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01946443

T. Shikanai, Y. Munekage, K. Shimizu, T. Endo, and T. Hashimoto, Identification and characterization of Arabidopsis mutants with reduced quenching of chlorophyll fluorescence, Plant Cell Physiol, vol.40, pp.1134-1142, 1999.

P. K. Lundquist, The functional network of the Arabidopsis plastoglobule proteome based on quantitative proteomics and genome-wide coexpression analysis, Plant Physiol, vol.158, pp.1172-1192, 2012.

P. A. Vidi, Tocopherol cyclase (VTE1) localization and vitamin E accumulation in chloroplast plastoglobule lipoprotein particles, J. Biol. Chem, vol.281, pp.11225-11234, 2006.

A. J. Ytterberg, J. B. Peltier, and K. J. Van-wijk, Protein profiling of plastoglobules in chloroplasts and chromoplasts. A surprising site for differential accumulation of metabolic enzymes, Plant Physiol, vol.140, pp.984-997, 2006.

J. Martinis, ABC1K1/PGR6 kinase: a regulatory link between photosynthetic activity and chloroplast metabolism, Plant J, vol.77, pp.269-283, 2014.

M. Yang, Arabidopsis atypical kinase ABC1K1 is involved in red lightmediated development, Plant Cell Rep, vol.35, pp.1213-1220, 2016.

P. K. Lundquist, Loss of plastoglobule kinases ABC1K1 and ABC1K3 causes conditional degreening, modified prenyl-lipids, and recruitment of the jasmonic acid pathway, Plant Cell, vol.25, pp.1818-1839, 2013.

Y. Kato, E. Miura, K. Ido, K. Ifuku, and W. Sakamoto, The variegated mutants lacking chloroplastic FtsHs are defective in D1 degradation and accumulate reactive oxygen species, Plant Physiol, vol.151, pp.1790-1801, 2009.

C. M. Wetzel, C. Z. Jiang, L. J. Meehan, D. F. Voytas, and S. R. Rodermel, Nuclear-organelle interactions: the immutans variegation mutant of Arabidopsis is plastid autonomous and impaired in carotenoid biosynthesis, Plant J, vol.6, pp.161-175, 1994.

N. Zagari, SNOWY COTYLEDON 2 promotes chloroplast development and has a role in leaf variegation in both lotus japonicus and Arabidopsis thaliana, Mol. Plant, vol.10, pp.721-734, 2017.

N. R. Mekala, M. Suorsa, M. Rantala, E. M. Aro, and M. Tikkanen, Plants actively avoid state transitions upon changes in light intensity: role of lightharvesting complex II protein dephosphorylation in high light, Plant Physiol, vol.168, pp.721-734, 2015.

S. Bellafiore, F. Barneche, G. Peltier, and J. D. Rochaix, State transitions and light adaptation require chloroplast thylakoid protein kinase STN7, Nature, vol.433, pp.892-895, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00015603

J. D. Rochaix, Redox regulation of thylakoid protein kinases and photosynthetic gene expression, Antioxid. Redox Signal, vol.18, pp.2184-2201, 2013.

A. Shapiguzov, Activation of the Stt7/STN7 kinase through dynamic interactions with the cytochrome b6f complex, Plant Physiol, vol.171, pp.82-92, 2016.

A. Trotta, M. Suorsa, M. Rantala, B. Lundin, and E. M. Aro, Serine and threonine residues of plant STN7 kinase are differentially phosphorylated upon changing light conditions and specifically influence the activity and stability of the kinase, Plant J, vol.87, pp.484-494, 2016.

M. Pietrzykowska, The light-harvesting chlorophyll a/b binding proteins Lhcb1 and Lhcb2 play complementary roles during state transitions in Arabidopsis, Plant Cell, vol.26, pp.3646-3660, 2014.

V. Bonardi, Photosystem II core phosphorylation and photosynthetic acclimation require two different protein kinases, Nature, vol.437, pp.1179-1182, 2005.

A. Schonberg, Identification of STN7/STN8 kinase targets reveals connections between electron transport, metabolism and gene expression, Plant J, vol.90, pp.1176-1186, 2017.

M. Tikkanen, M. Nurmi, S. Kangasjarvi, and E. M. Aro, Core protein phosphorylation facilitates the repair of photodamaged photosystem II at high light, Biochim. Biophys. Acta, vol.1777, pp.1432-1437, 2008.

S. Bailey, A critical role for the Var2 FtsH homologue of Arabidopsis thaliana in the photosystem II repair cycle in vivo, J. Biol. Chem, vol.277, 2002.

R. J. Strasser, M. Tsimilli-michael, S. Qiang, and V. Goltsev, Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis, Biochim. Biophys. Acta, vol.1797, pp.1313-1326, 2010.

H. M. Kalaji, Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements, Plant Physiol. Biochem, vol.81, pp.16-25, 2014.

K. Maxwell and G. N. Johnson, Chlorophyll fluorescence--a practical guide, J. Exp. Bot, vol.51, pp.659-668, 2000.

T. Graan and D. R. Ort, Quantitation of the rapid electron donors to P700, the functional plastoquinone pool, and the ratio of the photosystems in spinach chloroplasts, J. Biol. Chem, vol.259, pp.14003-14010, 1984.

G. Finazzi, Involvement of state transitions in the switch between linear and cyclic electron flow in Chlamydomonas reinhardtii, EMBO Rep, vol.3, pp.280-285, 2002.

G. Finazzi, Function-directed mutagenesis of the cytochrome b6f complex in Chlamydomonas reinhardtii: involvement of the CD loop of cytochrome b6 in quinol binding to the Q(o) site, Biochemistry, vol.36, pp.2867-2874, 1997.

P. Pesaresi, M. Pribil, T. Wunder, and D. Leister, Dynamics of reversible protein phosphorylation in thylakoids of flowering plants: the roles of STN7, STN8 and TAP38, Biochim. Biophys. Acta, vol.1807, pp.887-896, 2011.

M. Tikkanen, M. Grieco, S. Kangasjarvi, and E. M. Aro, Thylakoid protein phosphorylation in higher plant chloroplasts optimizes electron transfer under fluctuating light, Plant Physiol, vol.152, pp.723-735, 2010.

B. Genty, J. Harbinson, J. M. Briantais, and N. R. Baker, The relationship between non-photochemical quenching of chlorophyll fluorescence and the rate of photosystem 2 photochemistry in leaves, Photosynth. Res, vol.25, pp.249-257, 1990.

J. Lavergne and P. Joliot, Restricted diffusion in photosynthetic membranes, Trends Biochem. Sci, vol.16, pp.129-134, 1991.

P. Müller, X. P. Li, and K. K. Niyogi, Non-photochemical quenching. A response to excess light energy, Plant Physiol, vol.125, pp.1558-1566, 2001.

H. Huang, M. Yang, Y. Su, L. Qu, and X. W. Deng, Arabidopsis atypical kinases ABC1K1 and ABC1K3 act oppositely to cope with photodamage under red light, Mol. Plant, vol.8, pp.1122-1124, 2015.

M. Trouillard, Kinetic properties and physiological role of the plastoquinone terminal oxidase (PTOX) in a vascular plant, Biochim. Biophys. Acta, vol.1817, pp.2140-2148, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00747043

D. I. Arnon, Copper enzymes in isolated chloroplasts. polyphenoloxidase in Beta vulgaris, Plant Physiol, vol.24, pp.1-15, 1949.

P. Longoni, D. Douchi, F. Cariti, G. Fucile, and M. Goldschmidt-clermont, Phosphorylation of the light-harvesting complex II isoform Lhcb2 is central to state transitions, Plant Physiol, vol.169, pp.2874-2883, 2015.

J. Martinis, F. Kessler, and G. Glauser, A novel method for prenylquinone profiling in plant tissues by ultra-high pressure liquid chromatography-mass spectrometry, Plant Methods, vol.7, p.23, 2011.

L. Eugeni-piller, G. Glauser, F. Kessler, and C. Besagni, Role of plastoglobules in metabolite repair in the tocopherol redox cycle, Front. Plant Sci, vol.5, 2014.