A. Kusiak, H. Zheng, and Z. Song, On-line monitoring of power curves, Renewable Energy, vol.34, issue.6, pp.1487-1493, 2009.

Y. Lei, N. Li, L. Guo, N. Li, T. Yan et al., Machinery health prognostics: A systematic review from data acquisition to rul prediction, Mechanical Systems and Signal Processing, vol.104, pp.799-834, 2018.

Y. Lei, N. Li, and J. Lin, A new method based on stochastic process models for machine remaining useful life prediction, IEEE Transactions on Instrumentation and Measurement, vol.65, issue.12, pp.2671-2684, 2016.

A. Malhi, R. Yan, and R. X. Gao, Prognosis of defect propagation based on recurrent neural networks, IEEE Transactions on Instrumentation and Measurement, vol.60, issue.3, pp.703-711, 2011.

A. Mosallam, K. Medjaher, and N. Zerhouni, Data-driven prognostic method based on bayesian approaches for direct remaining useful life prediction, Journal of Intelligent Manufacturing, vol.27, issue.5, pp.1037-1048, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01025442

G. Niu and B. S. Yang, Intelligent condition monitoring and prognostics system based on data-fusion strategy, Expert Systems with Applications, vol.37, issue.12, pp.8831-8840, 2010.

P. Paris and F. Erdogan, A critical analysis of crack propagation laws, Journal of basic engineering, vol.85, issue.4, pp.528-533, 1963.

E. Ramasso, M. Rombaut, and N. Zerhouni, Joint prediction of continuous and discrete states in time-series based on belief functions, IEEE transactions on cybernetics, vol.43, issue.1, pp.37-50, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01303501

L. Saidi, J. B. Ali, E. Bechhoefer, and M. Benbouzid, Wind turbine high-speed shaft bearings health prognosis through a spectral kurtosis-derived indices and svr, Applied Acoustics, vol.120, pp.1-8, 2017.

A. Saxena, J. Celaya, E. Balaban, K. Goebel, B. Saha et al., Metrics for evaluating performance of prognostic techniques, Prognostics and health management, pp.1-17, 2008.

M. Sayed-mouchaweh, Learning from data streams in dynamic environments, 2016.

A. K. Schömig and O. Rose, On the suitability of the weibull distribution for the approximation of machine failures, IIE Annual Conference. Proceedings. p. 1. Institute of Industrial and Systems Engineers (IISE), 2003.

A. Soualhi, K. Medjaher, and N. Zerhouni, Bearing health monitoring based on hilbert-huang transform, support vector machine, and regression, IEEE Transactions on Instrumentation and Measurement, vol.64, issue.1, pp.52-62, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01026491

J. B. Tenenbaum, V. De-silva, and J. C. Langford, A global geometric framework for nonlinear dimensionality reduction, science, vol.290, issue.5500, pp.2319-2323, 2000.

D. A. Tobon-mejia, K. Medjaher, N. Zerhouni, and G. Tripot, A data-driven failure prognostics method based on mixture of gaussians hidden markov models, IEEE Transactions on reliability, vol.61, issue.2, pp.491-503, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00737585

H. Toubakh and M. Sayed-mouchaweh, Hybrid dynamic data-driven approach for drift-like fault detection in wind turbines, Evolving Systems, vol.6, issue.2, pp.115-129, 2015.

H. Toubakh and M. Sayed-mouchaweh, Hybrid dynamic classifier for drift-like fault diagnosis in a class of hybrid dynamic systems: Application to wind turbine converters, Neurocomputing, vol.171, pp.1496-1516, 2016.

P. Tse and D. Atherton, Prediction of machine deterioration using vibration based fault trends and recurrent neural networks, Journal of vibration and acoustics, vol.121, issue.3, pp.355-362, 1999.

O. Uluyol, G. Parthasarathy, W. Foslien, and K. Kim, Power curve analytic for wind turbine performance monitoring and prognostics, Annual conference of the prognostics and health management society, vol.2, pp.1-8, 2011.

P. Wang, B. D. Youn, and C. Hu, A generic probabilistic framework for structural health prognostics and uncertainty management, Mechanical Systems and Signal Processing, vol.28, pp.622-637, 2012.

T. Wang, J. Yu, D. Siegel, and J. Lee, A similarity-based prognostics approach for remaining useful life estimation of engineered systems, PHM 2008. International Conference on, pp.1-6, 2008.

W. Q. Wang, M. F. Golnaraghi, and F. Ismail, Prognosis of machine health condition using neuro-fuzzy systems, Mechanical Systems and Signal Processing, vol.18, issue.4, pp.813-831, 2004.

Y. Wang, X. Ma, and M. J. Joyce, Reducing sensor complexity for monitoring wind turbine performance using principal component analysis, Renewable energy, vol.97, pp.444-456, 2016.

Y. Wang, Y. Peng, Y. Zi, X. Jin, and K. L. Tsui, A two-stage data-driven-based prognostic approach for bearing degradation problem, IEEE Transactions on Industrial Informatics, vol.12, issue.3, pp.924-932, 2016.

J. Yan, M. Koc, and J. Lee, A prognostic algorithm for machine performance assessment and its application, Production Planning & Control, vol.15, issue.8, pp.796-801, 2004.

L. Y. Zhai, W. F. Lu, Y. Liu, X. Li, and G. Vachtsevanos, Analysis of time-to-failure data with weibull model in product life cycle management. In: Re-engineering manufacturing for sustainability, pp.699-703, 2013.

B. Zhang, L. Zhang, and J. Xu, Degradation feature selection for remaining useful life prediction of rolling element bearings, Quality and Reliability Engineering International, vol.32, issue.2, pp.547-554, 2016.

J. Zhu, J. Yoon, D. He, B. Qiu, and E. Bechhoefer, Online condition monitoring and remaining useful life prediction of particle contaminated lubrication oil, Prognostics and Health Management (PHM), 2013 IEEE Conference on, pp.1-14, 2013.

J. Zhu, J. M. Yoon, D. He, Y. Qu, and E. Bechhoefer, Lubrication oil condition monitoring and remaining useful life prediction with particle filtering, International Journal of Prognostics and Health Management, vol.4, pp.124-138, 2013.

E. Zio and F. Di-maio, A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear system, Reliability Engineering & System Safety, vol.95, issue.1, pp.49-57, 2010.

E. Zio and G. Peloni, Particle filtering prognostic estimation of the remaining useful life of nonlinear components, Reliability Engineering & System Safety, vol.96, issue.3, pp.403-409, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00609502