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ABSTRACT

Context. Recent Juno observations have suggested that the heavy elements in Jupiter could be diluted throughout a large fraction of
its gaseous envelope, providing a stabilising compositional gradient over an extended region of the planet. This could trigger layered
semi-convection, which, in the context of giant planets more generally, may explain Saturn’s luminosity excess and play a role in
causing the abnormally large radii of some hot Jupiters. In giant planet interiors, it could take the form of density staircases, which
are convective layers separated by thin stably stratified interfaces. In addition, the efficiency of tidal dissipation is known to depend
strongly on the planetary internal structure.
Aims. We aim to study the resulting tidal dissipation when internal waves are excited in a region of layered semi-convection by tidal
gravitational forcing due to other bodies (such as moons in giant planet systems, or stars in hot Jupiter systems).
Methods. We adopt a local Cartesian model with a background layered density profile subjected to an imposed tidal forcing, and we
compute the viscous and thermal dissipation rates numerically. We consider two sets of boundary conditions in the vertical direction:
periodic boundaries and impenetrable, stress-free boundaries, with periodic conditions in the horizontal directions in each case. These
models are appropriate for studying the forcing of short-wavelength tidal waves in part of a region of layered semi-convection, and in
an extended envelope containing layered semi-convection, respectively.
Results. We find that the rates of tidal dissipation can be enhanced in a region of layered semi-convection compared to a uniformly
convective medium, where the latter corresponds with the usual assumption adopted in giant planet interior models. In particular,
a region of layered semi-convection possesses a richer set of resonances, allowing enhanced dissipation for a wider range of tidal
frequencies. The details of these results significantly depend on the structural properties of the layered semi-convective regions.
Conclusions. Layered semi-convection could contribute towards explaining the high tidal dissipation rates observed in Jupiter and
Saturn, which have not yet been fully explained by theory. Further work is required to explore the efficiency of this mechanism in
global models.

Key words. hydrodynamics – waves – methods: numerical – planets and satellites: dynamical evolution and stability –
planets and satellites: interiors – planet-star interactions

1. Introduction

Based on astrometric measurements spanning more than a cen-
tury, Lainey et al. (2009, 2012, 2017) found that the rates of
tidal dissipation in Jupiter and Saturn are one order of magnitude
higher than previously thought. This has important astrophysical
consequences since tidal interactions are a key mechanism for
driving the rotational, orbital, and thermal evolution of moons
and planets (and also stars) on very long timescales.

Moreover, we know that this evolution is linked to the
efficiency of tidal dissipation in celestial bodies and strongly
depends on their internal structures (see reviews by Mathis &
Remus 2013; Ogilvie 2014; Mathis 2017, and references therein).
In this framework, seismology has proven itself very useful for
inferring the properties of, and understanding, the Earth’s inte-
rior. However, there have been no clear detections of oscillations
of the surfaces of Jupiter and Saturn because the radial veloci-
ties of the excited modes have very small amplitudes (Gaulme
et al. 2011). Thus, the internal structures of giant planets remain
poorly constrained.

Some progress has been made recently, however. By
analysing the properties of density waves excited in Saturn’s
rings by the gravitational forcing due to global oscillation modes
inside the planet, Fuller (2014) showed that these waves’ prop-
erties were compatible with an interior model that contains an
extended stably stratified region outside a solid core that sup-
ports gravity modes. In addition, the ongoing Juno mission
opens a path to improving our understanding of Jupiter’s inte-
rior (Miguel et al. 2016; Bolton et al. 2017). For instance, it
has been estimated from Juno’s gravitational measurements that
Jupiter’s zonal flows extend down to only 3000 km below cloud
level, which constrains the internal rotation of Jupiter (Kaspi
et al. 2018; Guillot et al. 2018). In addition, and more rele-
vant to the present study, it has been suggested by Wahl et al.
(2017) that the deep interior structure of Jupiter is consistent
with models in which the heavy elements of its core are diluted
in its envelope. This observation, if confirmed, could corrobo-
rate a number of theoretical studies that suggest more complex
models of giant planet interiors containing stabilising composi-
tional gradients that hamper large-scale convection in their deep
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interiors (Stevenson 1982, 1985; Leconte & Chabrier 2012;
Vazan et al. 2016, 2018). This picture significantly departs from
the standard three-layer model in which a molecular H/He enve-
lope surrounds a metallic H/He envelope, on top of a rocky/icy
core composed of heavy elements (see Guillot et al. 2004).
Among the relevant works, some have suggested that regions
exhibiting a stable compositional gradient could exist, either at
the core boundary due to its erosion (Guillot et al. 2004; Mazevet
et al. 2015), or at the interface between metallic and molecular
H/He due to gravitational settling of He droplets in the molecular
region (Stevenson & Salpeter 1977; Nettelmann et al. 2015). In
particular, the most recent study by Vazan et al. (2018) estimates
that compositional gradients could persist from the primordial
evolution of Jupiter for ∼40% of its mass.

The presence of a stabilising compositional gradient along-
side the destabilising entropy gradient (driving the convection)
could trigger oscillatory double-diffusive convection in the form
of layered semi-convection (see Garaud 2018, for a recent
review) in which a large number of well-mixed convective lay-
ers are separated by thin stably stratified interfaces (Leconte &
Chabrier 2012; Wood et al. 2013, and references therein). The
associated density profile is nearly constant in the convective
steps and undergoes a sharp jump in stably stratified interfaces,
giving a density staircase-like structure. These kind of structures
are also observed on Earth, for instance in the Arctic Ocean
(Ghaemsaidi et al. 2016) and in geothermally active lakes (Wüest
et al. 2012). The number of layers, their thickness, and the long-
term evolution of the staircase are not well constrained based on
our current understanding of the physics of these layers and of
giant planet interiors more generally. A region of layered semi-
convection could be important in the thermal evolution of giant
planets, and may explain Saturn’s luminosity excess (Leconte &
Chabrier 2013) and may contribute to the inflated radii of some
hot Jupiters (e.g. Chabrier & Baraffe 2007). Finally, we note that
Vazan et al. (2018) have estimated the region in which layered
semi-convection could potentially be present in Jupiter today as
∼10% of its mass.

In this work, we study for the first time the impact of layered
semi-convection upon the efficiency of tidal dissipation within
an idealised Cartesian model. Two tidal components are usually
distinguished: the equilibrium tide, a large-scale flow induced
by the quasi-hydrostatic adjustment to the gravitational potential
of the perturber (such as the moons of giant planets; see Zahn
1966; Remus et al. 2012), and the dynamical tide, composed of
internal waves excited by the perturber (Zahn 1975; Ogilvie &
Lin 2004). Their restoring forces are buoyancy and the Corio-
lis acceleration, thus they are often called gravito-inertial waves.
Their dissipation by viscosity and thermal diffusion will lead to
the long-term rotational, orbital, and thermal evolution of the
system (e.g. Ogilvie 2014). In our Cartesian model, we adopt
a tidal-like forcing that is designed to mimic certain aspects of
the periodic forcing of tidal gravito-inertial waves by the gravi-
tational potential of a moon orbiting a giant planet. The orbital
frequency of a moon is generally small compared to the dynam-
ical frequency of the planet, and we mostly expect waves in the
sub-inertial frequency range (i.e. with a frequency less than the
Coriolis frequency 2Ω, where Ω is the mean rotation rate of
the planet) to be excited resonantly by tidal forcing (e.g. Ogilvie
2014).

Recently, several papers have begun to study how a region of
layered semi-convection could modify the propagation of inter-
nal (and inertial) waves, and to analyse the properties of their
associated oscillation modes. Belyaev et al. (2015) derived the
dispersion relation for the free modes of a staircase, showed that

regions of layered semi-convection could sustain g-modes, and
considered the effects of rotation at the pole and at the equator.
Sutherland (2016) studied the transmission of an incident inter-
nal wave upon a density staircase embedded in a stably stratified
medium under the traditional approximation, which consists of
neglecting the horizontal component of the rotation vector in
the Coriolis acceleration. Finally, André et al. (2017; hereafter
Paper I) have generalised both of these previous studies by
analysing the effects of rotation including the full Coriolis accel-
eration at any latitude, and studied its effects on the free modes of
a density staircase and on the transmission of incident waves. We
found that waves incident on a region of layered semi-convection
are preferentially transmitted if their frequencies match those of
a free mode of the staircase.

The present paper focuses on how the dissipation of the
dynamical tide is affected by the presence of a region of layered
semi-convection. In particular, our underlying motivation is to
determine whether the dissipation of tidal waves in a region of
layered semi-convection could be significantly enhanced com-
pared to a fully convective (adiabatic) medium. If so, layered
semi-convection could play a key role in explaining the high tidal
dissipation rates observed in Jupiter (Lainey et al. 2009) and
Saturn (Lainey et al. 2017), alongside other physical mechanisms
such as turbulent friction applied to tidal inertial waves in con-
vective envelopes (e.g. Ogilvie & Lin 2004; Mathis et al. 2016),
the visco-elastic dissipation in rocky/icy dense central regions
(e.g. Remus et al. 2012; Guenel et al. 2014), or the resonant
locking of tidal gravito-inertial modes (Fuller et al. 2016).

In Sect. 2 we introduce the relevant mathematical and phys-
ical aspects of the forcing and dissipation of linear internal (and
inertial) waves. In Sect. 3 we present our study of the layered
case. In particular, we explore how the rates of tidal dissipa-
tion depend on the properties of the staircase and other control
parameters of our model. We compare our results with the fully
convective case, since this is the most commonly adopted model
of giant planet interiors. Finally, we discuss in Sect. 4 some of
the implications of our results, particularly for solar system giant
planets, and we also present our conclusions and discuss some
possible directions for future work.

2. Numerical calculation of the forcing and
dissipation of internal waves in a region of
layered semi-convection

2.1. Main assumptions

Our main assumptions are the same as in Paper I, except
that we now take into account dissipative processes. We adopt
the Boussinesq approximation in a local Cartesian model
(Gerkema & Shrira 2005; Mathis et al. 2014) that represents a
small patch of a giant planet. We centre our box on a point M of
the gaseous envelope (see Fig. 1). We thus neglect the sphericity
of the problem as the first step (see e.g. the appendix in Ogilvie &
Lin 2004; Auclair Desrotour et al. 2015; André et al. 2017, for the
cases of pure inertial waves, gravito-inertial waves, and gravito-
inertial waves in the layered case, respectively). Our aim is to
study the dissipation of short-wavelength internal waves by vis-
cosity and thermal diffusion, which are represented here by a
constant kinematic viscosity ν, and a constant thermal diffusiv-
ity κ. In the case of convective layers, these coefficients represent
an effective viscosity/diffusivity that accounts for turbulent fric-
tion acting on tidal waves (e.g. Zahn 1966, 1989; Goldreich &
Keeley 1977; Ogilvie & Lesur 2012; Mathis et al. 2016).
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Fig. 1. Left panel: global view of a giant planet: the gaseous envelope
(in yellow, the shading denoting density), lies on top of the core (in red).
Right panel: magnified picture of the local Cartesian box, centred on a
point M of a giant planet envelope, corresponding to a colatitude Θ.
The box is tilted with respect to the spin axis, and its vertical axis z,
corresponding to the local radial direction, is thus anti-aligned with
gravity. The x- and y-axes correspond to the local azimuthal and lati-
tudinal directions, respectively, while the χ-axis makes an angle α with
respect to the x-axis.

We adopt the same notation as in Paper I, in particular our
local system of coordinates (x, y, z) corresponds to the local
azimuthal, latitudinal, and radial directions, respectively. The
rotation vector Ω is inclined by an angle Θ with respect to the
gravity vector g, which is (anti-)aligned with the vertical direc-
tion. Thus, the latitudinal and vertical components of the rotation
vector are, respectively,

f̃ = 2Ω sin Θ, (1)
f = 2Ω cos Θ, (2)

so that 2Ω = (0, f̃ , f ). We follow Gerkema & Shrira (2005) and
we introduce a reduced horizontal coordinate, χ, which makes
an angle α with respect to the x-axis:

χ = x cosα + y sinα. (3)

This will allow us to treat the problem within a two-
dimensional framework. We finally define

f̃s = f̃ sinα. (4)

2.2. Equations of motion and energetics

We study the linear excitation of gravito-inertial waves subject
to dissipative processes, namely viscosity and thermal diffusion.
We now include an external body forcing F, with compo-
nents (Fx, Fy, Fz) in the local Cartesian model. We note that
tidal gravito-inertial waves are not forced directly by the tidal
potential, but by the Coriolis acceleration applied to the equi-
librium tide (see e.g. Ogilvie 2014, and references therein). We
focus on the linear tidal response in this study, neglecting the
effects of fluid non-linearities on the dissipation (or excitation)
of waves (Jouve & Ogilvie 2014; Favier et al. 2014). This is
likely to be an appropriate assumption for studying the excita-
tion of waves in giant planets excited by their natural satellites,
though it is possible that non-linear effects could still play some

role in damping short-wavelength waves, which is neglected
here.

The linearised components of the momentum equation in the
Boussinesq approximation are

Dνu − f v + f̃w = − 1
ρ0

∂p
∂x

+ Fx, (5)

Dνv + f u = − 1
ρ0

∂p
∂y

+ Fy, (6)

Dνw − f̃ u = − 1
ρ0

∂p
∂z

+ b + Fz, (7)

where u, v, and w are the components of the velocity perturbation
in the local azimuthal, latitudinal, and radial directions, respec-
tively; ρ0 is a constant reference value for the density; p is the
pressure fluctuation; and

Dν = ∂t − ν∇2. (8)

The continuity equation is

∂u
∂x

+
∂v

∂y
+
∂w

∂z
= 0. (9)

Finally, the thermal energy equation is

Dκb + N2w = 0, (10)

where

Dκ = ∂t − κ∇2 (11)

and

b = −g ρ
ρ0

(12)

is the fluid buoyancy, ρ is the density fluctuation, and N2(z) is
the squared buoyancy frequency whose z-dependence is chosen
to model a layered density structure (see Sect. 2.4).

From the above set of equations, we derive in Appendix A
the forced Poincaré equation,

DκD2
ν∇2w + Dκ( f · ∇)2w + Dν

[
N2∇2

⊥
]
w = O · (∇ × F), (13)

where the operator O is

O ≡ Dκ

(
Dν

∂

∂y
,−Dν

∂

∂x
,− f · ∇

)
. (14)

Equation (13) governs the spatio-temporal evolution of the
vertical velocity of gravito-inertial waves driven by a prescribed
body force F in the presence of dissipative mechanisms. Our
adopted body force will be designed to mimic certain aspects of
tidal forcing.

We wish to understand how efficiently tidally forced waves
are dissipated in a region of layered semi-convection. From
Eqs. (5)–(10), we thus derive an energy balance equation

dĒ
dt

= − 1
V

∫
S
Π · dS + D̄visc + D̄ther + Ī, (15)

where Ē is the total (pseudo-)energy of the wave, the sum of
kinetic and (available) potential energies (both spatially averaged
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over the box):

Ek =
1
V

∫
V

1
2
ρ0|u|2 dV, (16)

and

Ep =


1
V

∫
V

1
2
ρ0

b2

N2 , if N2 , 0,

0, if N2 = 0,
(17)

respectively. We also define Π = pu, the flux density (flux per
unit area) of energy, and the volume-averaged dissipation by
viscosity and thermal diffusion:

D̄visc =
1
V

∫
V
ρ0

(
νu · ∇2u

)
dV, (18)

D̄ther =


1
V

∫
V
ρ0

(
κ

N2 b∇2b
)

dV, if N2 , 0,

0, if N2 = 0,
(19)

respectively. Finally, the mean rate of energy injection by the
forcing is

Ī =
1
V

∫
V
ρ0(u · F) dV. (20)

Our goal is to calculate numerically the volume-averaged
rates of viscous and thermal dissipation, D̄visc and D̄ther, respec-
tively, and the averaged total dissipation rate,

D̄ = D̄visc + D̄ther, (21)

as various parameters of our problem are varied. In particular, we
compute the frequency dependence of the dissipation by varying
the frequency of the forcing, ω, and thus obtain what we refer
to as dissipation spectra. We are also interested in computing
frequency-averaged dissipation, following Ogilvie (2013),〈
D̄
〉

=

∫ +∞

−∞
D̄(ω)

dω
ω
, (22)

which provides a measure of the dissipation at low frequencies.
This quantity will be useful for studying how the dissipation
varies with the parameters of our problem, including the proper-
ties of the background density staircase (see Sect. 2.4). The fact
that this is weighted with the inverse of the tidal frequency, natu-
rally makes it a frequency-averaged measure of the dissipation in
the low-frequency range corresponding to inertial waves, which
is usually the relevant range for tidal forcing (e.g. Ogilvie 2014).
Moreover, the final result will strongly depend on the depen-
dence of the forcing to the tidal frequency. We also note that the
expression given by Eq. (22) has been used for applications to
giant planets (Guenel et al. 2014) and stars (Mathis 2015; Gallet
et al. 2017; Bolmont et al. 2017), and provides a representative
order of magnitude of the tidal dissipation, so that its conse-
quences on the evolution of planetary systems can be studied
(Bolmont & Mathis 2016; Damiani & Mathis 2018).

2.3. Numerical statement of the problem

We consider our variables to vary as

a(x, y, z, t) = Re
{
A(z) exp

[
i(kxx + kyy − ωt)

]}
, (23)

where the wavenumbers in the horizontal direction, kx and ky,
and the frequency ω, are the same as that of the tidal-like forcing
F. The latter is taken to be 2π periodic in the x- and y-directions,
and in time. Thus, we write

F = F̃(z) exp
[
i(k⊥χ − ωt)

]
. (24)

Here, the vector F̃ = (F̃x, F̃y, F̃z) contains the Fourier com-
ponents of F in the local azimuthal, latitudinal and radial
directions, respectively.

We note that the frequency ω is not necessarily equal to the
orbital frequency of a companion. Indeed, in the case of a circu-
lar aligned orbit, the dominant component of the tidal potential
has ω = 2(n − Ω) (where n is the orbital frequency), which is
not equal to n in general. In addition, it is appropriate for us to
solve only for the kx, ky, and ω of the forcing because we are
considering a linear problem (so that all horizontal wavenum-
bers and frequencies are uncoupled). In the case of an eccentric
or inclined orbit, several frequencies should instead be consid-
ered (e.g. Zahn 1966, 1977; Mathis & Le Poncin-Lafitte 2009;
Ogilvie 2014).

2.3.1. Vertically periodic boundary conditions

For the first set of calculations, we have assumed quantities to
be periodic in the vertical direction, which is equivalent to con-
sidering part of a more vertically extended staircase. To solve
the system of Eqs. (5)–(10) numerically, we can therefore use a
Fourier collocation method (Boyd 2001). This method assumes
that approximate solutions are represented as a discrete Fourier
series that matches the exact solution on a set of collocation
points, defined by

zn = zi + (zo − zi)
n
Nz

for n = {0, . . . ,Nz − 1}, (25)

where Nz is the number of grid points, and zi and zo define the
inner and outer edge of the box, respectively. Here we choose
zi = −Lz/2 and zo = Lz/2. A spectral collocation method is used
in preference to finite differences to approximate the deriva-
tives because spectral methods are more accurate for smooth
solutions, allowing us to use fewer grid points to obtain the
same accuracy, which is computationally more efficient. Verti-
cal derivatives are performed using the derivative matrix D1 (see
e.g. Appendix F of Boyd 2001), defined by

(D1)i j =


1
2

(−1)i+ j cot
( zi − z j

2

)
, if i , j,

0, if i = j.

(26)

We adopt a collocation method, rather than a Fourier
Galerkin method because this allows us to solve for modes in
a spatially varying (with z) density structure more efficiently.

While considering periodic boundary conditions in the verti-
cal is relevant for studying global modes propagating in a portion
of a more vertically extended staircase, this assumption does
exclude certain effects. In particular, this model prevents reflec-
tion of internal waves from a solid core, which can be important
in the geometrical focusing of internal wave beams along wave
attractors (e.g. Ogilvie & Lin 2004). This should be consid-
ered in an equivalent study in a global geometry. Nevertheless,
here we extend our study in this Cartesian model by modifying
boundary conditions.
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2.3.2. Vertically rigid and stress-free boundary conditions

To address this point, we also consider a model with the same
set-up as above, but with impenetrable, stress-free boundary con-
ditions in the vertical. For clarity, hereafter we refer to them as
rigid boundary conditions. This model permits the reflection of
waves from the boundaries, and leads to a modification of the
global modes, as in the case of periodic boundary conditions.
We implement these conditions by using a Chebyshev colloca-
tion method instead of a Fourier method in the vertical direction.
Our set-up assumes impenetrable, stress-free boundary condi-
tions, with zero buoyancy perturbation at the upper and lower
boundaries. Namely, at z = zi and z = zo, we impose that:
∂zu = 0,
∂zv = 0,
w = 0,
b = 0.

(27)

We otherwise solve the same system of equations as in
Sect. 2.3.1 at the Gauss–Lobatto points, such that

zn =
1
2

[(1 + xn) zo + (1 − xn)zi] , (28)

where

xn = cos
(
πn
Nz

)
, n = 1, . . . ,Nz. (29)

Derivatives are calculated using a different derivative matrix
D1 (see e.g. Appendix F of Boyd 2001) than in Sect. 2.3.1, which
is now defined by

(D1)i j =



(−1)i+ j pi

p j(xi − x j)
, if i , j,

− x j

2(1 − x2
j )
, if i = j ; 0 < j < N,

−1
6

(1 + 2N2), if i = j = N,

1
6

(1 + 2N2), if i = j = 0,

(30)

where p0 = pN = 2, and p j = 1 otherwise.
This set-up represents a plane-parallel model of an extended

giant planet envelope filled with a region of layered semi-
convection. The reflection of internal waves from the core and
surface are then allowed. This model may be more realistic than
the one considered in Sect. 2.3.1, but for simplicity we con-
tinue to neglect global curvature effects that would be present
in spherical geometry, and continue to adopt the Boussinesq
approximation, which prevents us from studying realistic plane-
tary density profiles (where the density should vary over several
orders of magnitude).

2.4. Modelling the layered structure and the forcing

The assumption of periodicity in the vertical direction is appro-
priate if we consider our model to represent part of a more
vertically extended density staircase. We can then consider our
staircase to have a periodicity of m steps. We also consider rigid
upper and lower boundaries, which is appropriate if we consider
our model to represent a plane-parallel layer of a giant planet
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Fig. 2. Buoyancy frequency N(z) for an example with 3 steps. Con-
vective layers of size d, within which N(z) = 0, are separated by
stably stratified interfaces of size l, within which N(z) > 0, given by
Eq. (31). The amplitude of the peaks, N0, is calculated so that the mean
stratification equals N̄. Here, N0 ≈ 2.58N̄.

entirely filled with layered semi-convective steps and containing
m stably stratified interfaces.

2.4.1. Layered structure and buoyancy frequency profile

In a layered structure, the buoyancy frequency N (and accord-
ingly the background density gradient) is not uniform and can
vary with z on rather short length scales. Unlike in Paper I, we
adopt a smooth buoyancy frequency profile, which is advanta-
geous numerically. We take a profile like that displayed in Fig. 2
to model the alternation of convective and stably stratified layers.
Namely, we take

N2(z) =


N2

0

2

(
1 + cos

(
2π

(z − z j)
l

))
, if |z − z j| < l/2

0, otherwise,

(31)

such that stably stratified interfaces correspond to positive val-
ues of the squared buoyancy frequency, while this is taken to be
zero in convective layers (such that they are isentropic and well
mixed). We define m to be the number of steps in the domain (or
equivalently the number of interfaces), l to be the size of the sta-
bly stratified layers, and z j to be the position of the jth interface,
defined by

z j = − (m + 1)
2m

Lz +
( j − 1)

m
Lz. (32)

The size of the convective layers is then d = (Lz − ml)/m.
This placement of the interfaces ensures that the distance
between adjacent interfaces equals d, except at both ends of
the domain in z. We also define the aspect ratio ε, as the ratio
between the size of the stably stratified interfaces, l, and the size
of the convective layers, d,

ε =
l
d
. (33)

This parameter is expected to be small in the planetary
regime. The step size, d, is expected to be smaller than the den-
sity (or pressure) scale height, H, with a ratio d/H that is likely
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to be in the range 10−6 . d/H . 1 (Leconte & Chabrier 2012;
Nettelmann et al. 2015).

The amplitude of the buoyancy frequency, N0, is calculated
to obtain the prescribed mean stratification

N̄2 ≡
∫ +zo/Lz

−zi/Lz

N2(ζ) dζ, (34)

where the dimensionless variable ζ = z/Lz. This gives

N0 = N̄
(

m
2

l
Lz

)−1/2

=
√

2N̄
(

1 + ε

ε

)1/2

. (35)

Figure 2 shows an example profile of N(z) with three steps,
for which N0 ≈ 2.58N̄.

2.4.2. Box parameters and dimensionless numbers

The vertical extent of the box is chosen such that Lz = 1, with the
domain extending from zi = −1/2 to zo = 1/2. The rotation rate
is such that 2Ω = 1, and the spin axis is chosen here to make an
angle Θ = π/4 with respect to the direction of gravity in order to
study the mid-latitude. By choosing these parameters, we have
defined our units of length to be Lz and time to be (2Ω)−1. We
finally set ρ0 = 1 to define our unit of mass.

To quantify the relative importance of diffusive processes,
we use the Ekman number,

E =
ν

2ΩL2
z
, (36)

and its equivalent for thermal dissipation,

K =
κ

2ΩL2
z
. (37)

Unless specified otherwise, we set E = K, thus giving a
Prandtl number Pr ≡ ν/κ = E/K = 1. In planetary interiors, we
expect smaller values for Pr, which can typically be of order
10−2 or smaller (Wood et al. 2013). Similarly, E and K are
expected to reach much smaller values in reality than we have
chosen here. Typically, the microscopic viscosity estimated by
the models of Guillot et al. (2004) correspond to E of order 10−18

(Ogilvie & Lin 2004). However, such values are computation-
ally inaccessible, with smaller values making the problem much
more computationally demanding. Our intention is to probe the
physics using accessible parameter values, with the hope that we
can extrapolate to the astrophysical regime. On the other hand, in
the case of convective layers, a Prandtl number associated with
an effective turbulent viscosity and thermal diffusivity may be
of order 1.

In order to quantify the importance of stratification relative
to rotation, we also define the dimensionless number

S̄ Ω =
N̄

2Ω
. (38)

Unless specified otherwise, we take N̄/2Ω = 10. The rel-
evant value for this parameter is uncertain. For example, in
the Arctic ocean, Ghaemsaidi et al. (2016) found that N̄ ∼ 70
mrad s−1, while 2ΩEarth ∼ 0.07 mrad s−1 (and 2ΩJupiter ∼ 0.35
mrad s−1). However, it is unclear from theory or simulation what
this parameter could be in the deep interiors of giant planets.
Fuller (2014) adopts a typical value of N̄/2ΩSaturn ∼ 5 to model a

stably stratified region outside the core of Saturn. In Sect. 3.3.3
we explore how tidal dissipation varies as a function of
S̄ Ω.

2.4.3. Forcing term

We adopt a body force vector

F = F̃y exp
[
i(k⊥χ + kzz − ωt)

]
êy, (39)

with F̃y = 1 and k⊥ = kz = 2π. We recall that χ = x cosα +
y sinα, where we have chosen α = π/2. Our choice of F is some-
what academic, but is designed to mimic aspects of large-scale
tidal forcing, i.e. forcing of waves by the equilibrium tide, which
acts as an effective force driving the dynamical tide. In reality,
this is radially node-less (so not oscillatory in z), but we first take
it to be periodic in z with the longest wavelength for numerical
convenience. In order to relax the assumption of periodicity of
the forcing with rigid boundaries, we have also performed calcu-
lations for which the forcing term was given a linear dependence
in z, namely F = F̃y z êy. This is a more realistic approximation
to the driving of waves by the equilibrium tide in a local model.
However, this did not produce any significant modification to our
results with a periodic forcing in z (in general). We therefore
focus on cases with periodic forcing in z.

In addition, we have explored the effect of modelling
a frequency-dependent expression for the forcing term when
computing frequency-averaged dissipation rates (see Sect. 3.3)
according to Eq. (22). This is physically more realistic in the
sense that the equilibrium tide (e.g. Zahn 1966; Remus et al.
2012), which is responsible for forcing the tidal waves, has a
velocity amplitude that is proportional to the tidal frequency ω
(e.g. Ogilvie & Lin 2004; Ogilvie 2013). The resulting forcing of
the dynamical tide itself is composed of two terms: the accelera-
tion of the equilibrium tide and the Coriolis acceleration applied
to the equilibrium tide (see e.g. Eq. (B6) of Ogilvie 2005). The
first has a frequency dependence in ω2, while the second has a
frequency dependence in ω (e.g. Ogilvie & Lin 2004; Ogilvie
2013). When computing frequency-averaged dissipation spectra
in Sect. 3.3, we take F̃y = ω (instead of 1 for calculations of
dissipation spectra) to account for the term that dominates at
low (sub-inertial) tidal frequencies, but in principle both terms
should be taken into account. This property also ensures that the
dissipation goes to 0 when the tidal frequency ω vanishes, such
as when spin-orbit synchronisation occurs.

We have chosen a simplistic expression for the forcing as
a first step to study the problem of tidal dissipation in layered
semi-convection because our main goal is to clearly identify the
physical effects of a layered density structure on tidal dissipation.
Choosing a more general form for F, while it might be more real-
istic, would result in more resonant peaks, making the physical
interpretation more challenging. We defer calculations adopting
this more realistic tidal forcing to a future study in spherical
geometry.

2.5. Test case in a uniformly stratified medium

In order to check the validity of our numerical code using both
the Fourier and Chebyshev collocation methods, we present two
test cases with uniform buoyancy frequency profiles, as in the
appendix of Ogilvie & Lin (2004) and in Auclair Desrotour et al.
(2015). We have verified that our code closely agrees with their
results in the appropriate cases. For the uniform case with verti-
cally periodic boundary conditions, a Fourier transform can also
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Fig. 3. Viscous (in blue) and thermal (in red) dissipation spectra in a uniformly stably stratified medium with N(z) = N̄ = 10Ω throughout the
domain in the case of periodic (left) and rigid (right) boundary conditions. Left panel: resonant peak centred on the single gravito-inertial mode
that is resonant with the forcing, with frequency ω̃(GIW) given by Eq. (40). Right panel: rigid boundary conditions do not perfectly excite only a
single global mode, they instead excite many modes that match the roots of the dispersion relation of gravito-inertial waves when kz = nπ, for
n = {1, . . . 20}.

be used in the z-direction and the system (Eqs. (5)–(10)) can be
solved analytically.

In Fig. 3, we show our results for a uniformly stably strat-
ified medium with N(z) = N̄ = 10Ω, using periodic (left) and
rigid (right) boundary conditions in the vertical direction. This
can be compared with Auclair Desrotour et al. (2015), among
others, in the appropriate cases. In the case of periodic bound-
ary conditions, we find perfect agreement for the dissipation
spectra obtained using the two separate methods, indicating that
our code works correctly. The corresponding averaged viscous
and thermal dissipation spectra, D̄visc and D̄ther, respectively, are
shown in both panels of Fig. 3 as a function of the normalised
forcing frequency, ω/2Ω.

Periodic boundary conditions. In the left panel of Fig. 3,
the viscous and thermal dissipation spectra both show a resonant
peak centred on the frequency

ω̃(GIW)

2Ω
=

(
S̄ 2

Ω

k2
⊥

k2 +
(êΩ · k)2

k2

)1/2

=
√

13.5, (40)

which corresponds with the positive root of the dispersion rela-
tion for gravito-inertial waves for our chosen parameters. At
this particular frequency, the forcing is resonant with the box-
scale gravito-inertial mode, which is influenced by both rotation
and stable density stratification. This leads to enhanced dissi-
pation around that frequency. We note that given the simple
form we have chosen for the forcing, we only obtain one reso-
nant peak. More peaks would be obtained if we were to take a
forcing that was a sum over many wavenumbers (Ogilvie & Lin
2004; Auclair Desrotour et al. 2015). In a spherical shell, the
tidal response is also likely to contain more resonant peaks (e.g.
Ogilvie & Lin 2004).

Rigid boundary conditions. In the right panel of Fig. 3, we
use rigid boundary conditions in the vertical direction, such that
the condition w(−Lz/2) = w(+Lz/2) = 0 is imposed. The vertical
wave number is then given by

k2
z = k2

⊥

N2 − ω2

ω2 − f 2 +

(
ω f̃s

ω2 − f 2

)2 , (41)

where k⊥ = 2π is imposed by the forcing. We can deduce the cor-
responding theoretical eigenfrequencies using the quantisation
relation

kz = nπ, (42)

where n is an integer (Gerkema & Shrira 2005). The result-
ing frequencies are shown as grey vertical dashed lines, for
n = {1, . . . , 20}. For n = {1, . . . , 15}, these match perfectly the
resonant peaks obtained with our numerical code using the
Chebyshev method, indicating that this is working correctly.
Higher values of n correspond to modes oscillating on smaller
scale, which are efficiently damped by diffusive processes. We
note that our forcing does not excite only a single mode in this
case, but instead excites many modes.

3. Dynamical tide in layered semi-convection

We now analyse the forced problem for a layered semi-
convective medium. The background buoyancy profile asso-
ciated with layered semi-convection differs drastically from a
uniformly stably stratified or fully convective medium. Accord-
ingly, we expect to obtain different resonances that are associated
with the layered density structure, as we also found in Paper I. In
this section we identify these resonances, try to understand their
underlying physics, and compare the dissipation of a density
staircase with a fully convective medium, which is the standard
model for giant planet deep interiors.

3.1. Resonance with free modes of the staircase

Armed with the numerical set-up described in Sect. 2, we com-
puted spatially averaged dissipation rates as a function of the
forcing frequency. We focus first on the case with periodic
boundary conditions, with one stably stratified interface in the
middle of the box, an aspect ratio ε = 0.2, and diffusivity coeffi-
cients E = K = 10−5. The dissipation spectrum obtained is dis-
played in the top panel of Fig. 4 (solid blue line). We have chosen
to represent only the dissipation spectra for positive frequencies,
adopting a logarithmic scale for clarity, keeping in mind that the
dissipation is symmetric with respect to ω = 0 in this model (see
also Ogilvie & Lin 2004; Auclair Desrotour et al. 2015).
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ω/2Ω ∼ 0.258 ω/2Ω ∼ 2.31 ω/2Ω ∼ 16.1

Fig. 4. Top panel: dissipation spectrum in our reference case with periodic boundary conditions and one step (solid blue line), also displaying the
eigenfrequencies (red crosses) of the free Poincaré equation for which the magnitude of the imaginary part is represented as a function of their
real part. Bottom panel: z-dependence of the vertical velocity, Ŵ(z), of a short-wavelength inertial eigenmode corresponding to ω/2Ω ∼ 0.258, the
leftmost resonance (left panel); of a short-wavelength gravito-inertial eigenmode corresponding to ω/2Ω ∼ 2.31 (middle panel); and of the gravity
eigenmode of the staircase, corresponding to ω/2Ω ∼ 16.1, the rightmost resonance (right panel). For each panel, the solid blue line represents the
real part of Ŵ(z), while the dashed orange line represents its imaginary part.

The first feature to note is that the dissipation spectrum con-
tains a number of peaks with enhanced dissipation, which differs
from the case of a uniform medium (e.g. left panel of Fig. 3).
This illustrates that a region of layered semi-convection pos-
sesses a richer set of resonances than a fully convective medium.

To determine the free modes, we set F = 0 in Eq. (A.4), to
obtain the unforced Poincaré equation. This is solved as an eigen-
value problem for the eigenfrequencies and eigenmodes using
the same Fourier collocation method. We have also done this
for one stably stratified interface with an aspect ratio ε = 0.2
and E = K = 10−5. The eigenfrequencies are plotted in the top
panel of Fig. 4 as red crosses. The magnitude of the imagi-
nary part of each eigenfrequency (effectively the damping rate
of the associated eigenmode) is plotted as a function of its real
part (effectively its temporal frequency). We plot only the least
damped modes as they are likely to be the best resolved using
our numerical method, and we have discarded certain “junk”
eigenmodes that oscillate on the grid-scale.

We see that each peak on the dissipation spectrum cor-
responds to the frequency of a free mode of the staircase,
indicating that their excitation by our forcing is responsible
for the peaks. In addition, the narrowest dissipation peaks
correspond to the least damped modes, as expected. By lowering
the diffusivities, we expect even more free modes to be excited
by the forcing.

We now analyse the spatial structure of the free
modes. In the bottom left panel of Fig. 4, we plot the
z-dependence of the vertical velocity, Ŵ(z), of a short-
wavelength inertial eigenmode corresponding to the leftmost
resonance. This is localised within the convective layer, (and has
k(c)

z d ≈ 2π, using the same notation as in Sect. 3.2.1). In the bot-
tom right panel of Fig. 4, we plot the z-dependence of the vertical
velocity, Ŵ(z), of the gravity eigenmode of the staircase, corre-
sponding to the rightmost resonance. This is primarily localised
inside the stably stratified interface. Finally, in the bottom middle
panel of Fig. 4, we plot the z-dependence of the vertical veloc-
ity, Ŵ(z), of a short-wavelength gravito-inertial eigenmode of the
staircase, corresponding toω/2Ω ∼ 2.31. In each panel, the solid
blue line represents the real part of Ŵ(z) while the dashed orange
line represents its imaginary part.

3.2. Understanding the resonant modes

In this section we are interested in understanding the forced spec-
tral response of the layered structure. We use a forcing amplitude
equal to unity, thus independent of frequency.

Figure 5 shows three dissipation spectra obtained using
periodic boundary conditions, each computed for one stably
stratified interface with ε = 0.2. The different panels correspond
to decreasing diffusivities such that E = K = 10−3, 10−4, and
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E = 10−3

E = 10−4

E = 10−5

Fig. 5. Dissipation spectra with periodic boundary conditions for a single interface with three different diffusivities (Ekman numbers), E =
K = 10−3 (top), 10−4 (middle), and 10−5 (bottom), and an aspect ratio ε = 0.2. The total dissipation is represented by the solid orange line, and
its viscous and thermal contributions are represented by the dotted blue and red lines, respectively. The dashed light blue line represents the
spatially averaged dissipation for a fully convective medium, D̄(c). For each panel, the quantity represented is D̄/D̄(c)

max, where D̄(c)
max ≡ maxω D̄(c) as

a function of the normalised frequency ω/2Ω. In the bottom panel the vertical dash-dotted lines indicate the position of characteristic frequencies
discussed in Sect. 3.2 (from left to right): resonance with short-wavelength inertial modes (in grey), resonances with short-wavelength super-inertial
gravito-inertial modes (in green), and resonance with a free gravity mode of the staircase (in light red).

10−5 (from top to bottom). For each panel, the total dissipation
rate, D̄, is represented by the solid orange line, while its vis-
cous and thermal contributions, D̄visc and D̄ther, are represented
by the dotted blue and red lines, respectively. For comparison,
the dissipation spectrum in a fully convective medium, D̄(c), is
represented by the dashed light blue line, and all the dissipation
rates have been normalised by D̄(c)

max ≡ maxω D̄(c).
In agreement with Ogilvie & Lin (2004) and Auclair

Desrotour et al. (2015), the resonant peaks are more numer-
ous and narrower when the viscosity (and thermal diffusivity)
is decreased to reach the smaller values that are more rele-
vant to planetary or stellar interiors. However, while our choice
of parameters would give only one resonant peak in a uni-
formly stably stratified or fully convective medium, centred on
ω/2Ω = 1 in the latter case (see Fig. 5), we clearly see that
the layered structure introduces new resonances. As a result,
it is clear that for E = K ≤ 10−4 (see the two bottom panels
of Fig. 5), the total dissipation in the layered case is higher
than in the convective case, except in a narrow frequency win-
dow around the Coriolis frequency, 2Ω. This discrepancy also

seems to become more important when diffusivities get smaller,
especially near the resonances introduced by the layered struc-
ture. Another observation is that these additional resonances
are broadly distributed over the frequency spectrum. Some
correspond to resonances with inertial modes, corresponding
to frequencies ω . 2Ω (red region in top panel of Fig. 5);
some with super-inertial gravito-inertial modes, correspond-
ing to frequencies 2Ω . ω . N̄ (purple region in top panel
of Fig. 5); and finally some with gravity modes, correspond-
ing to frequencies N̄ . ω . N0 (blue region in top panel of
Fig. 5).

In what follows, we identify the underlying physics behind
these resonances, building upon Sect. 3.1. In the bottom panel of
Fig. 5, corresponding to the lowest value of the diffusivities (E =

K = 10−5), we indicate the position of particular frequencies.
These frequencies are described by simple dispersion relations,
also found in André et al. (2017) to correspond with waves that
are efficiently transmitted across a density staircase. They are
found to be good candidates to explain the resonances that are
observed, and are described in further detail below.
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3.2.1. Resonance with short-wavelength inertial modes

In the inertial regime (ω < 2Ω), a succession of resonances
with enhanced dissipation appear as we decrease the viscos-
ity. These resonances correspond to inertial modes with vertical
semi-wavelengths that fit inside the convective layer. The grey
dashed lines in the bottom panel of Fig. 5 thus correspond to
frequencies that obey the relation λz/2 = nd, or equivalently

k(c)
z (ω)d = nπ, (43)

for different integers n. Here, d is the vertical extent of the con-
vective region (see Fig. 2), and to draw the vertical lines in Fig. 5,
we use the vertical wavenumber in the adiabatic limit,

k(c)
z = k⊥

[
ω2( f 2 + f̃ 2

s − ω2)
(ω2 − f 2)2

]1/2

, (44)

where the superscript “(c)” is used to indicate that this is the
vertical wave number in a convective medium. We recall that
the expressions of the quantities f and f̃s are given in Sect. 2.1.
The expression above is obtained from the dispersion relation of
pure inertial waves,

ω2 =
(2Ω · k)2

k2
⊥ + k(c)2

z

, (45)

where k = k⊥êχ + k(c)
z êz.

The discrepancy between the predicted and actual positions
of those resonances can be partly explained in two ways. Firstly,
the vertical wavenumber above corresponds to the adiabatic case.
Secondly, the stably stratified interface in the middle of the box
has a non-negligible vertical extent in which even pure inertial
waves become influenced by buoyancy. This differs from the ide-
alised model that was used in Paper I, in which stably stratified
interfaces were infinitesimally thin. We recall that in Paper I the
modes matching the condition given by Eq. (43) were also found
to be efficiently transmitted through a density staircase.

3.2.2. Resonance with short-wavelength super-inertial
gravito-inertial modes

Based on a similar idea, we also looked for modes in the gravito-
inertial regime with vertical semi-wavelengths that fit inside the
thin stably stratified interfaces, where they are propagative. In
the bottom panel of Fig. 5, the dot-dashed green vertical lines
correspond to frequencies such that

kz(ω)l = nπ (46)

for three different integers n = {1, 2, 3}. The frequency is given
by the dispersion relation of gravito-inertial waves,

ω2 = N2
0

k2
⊥

k2
⊥ + k2

z
+

(2Ω · k)2

k2
⊥ + k2

z
, (47)

where kz is now the vertical wavenumber in a stably stratified
medium, characterised by the constant buoyancy frequency N0.
We note that these waves are evanescent in the convective layer
since 2Ω < ω < N0 (see Mathis et al. 2014).

Since the buoyancy frequency is not constant in the sta-
bly stratified region (see Fig. 2), N0 was chosen to match the
corresponding peaks as closely as possible. Its value was
restricted so that N̄ < N0 < maxz N(z). However, we note that
we do not expect the vertical lines to perfectly match the posi-
tion of the resonant peaks because N2(z) is not constant in the

interfaces, and additionally the dispersion relation used above
(Eq. (47)) was obtained in the adiabatic case. Nevertheless, this
clearly explains the physics of these resonances with enhanced
dissipation.

3.2.3. Resonance with the free gravity mode of the staircase

In Paper I, we derived the following dispersion relation for the
free modes of the staircase (extending prior work by Belyaev
et al. 2015):

ω2 = N̄2
(

(k̄d)2/kzd
2 coth(kzd) − 2 cos θcsch(kzd)

)
, (48)

where the stably stratified interfaces were modelled as discontin-
uous jumps. Here, kz is given by Eq. (47), k̄ = k⊥ω/

√
(ω2 − f 2),

and cos θ is one of the roots of the polynomial

Tm(cos θ) + [cos θ coth(kzd) − csch(kzd)]Um−1(cos θ) = 0, (49)

where Tm and Um are Chebyshev polynomials of the first and
second kinds, respectively, with their order m being equal to the
number of convective steps.

Since kz has a complex dependence on ω, it is challenging to
extract the roots of the dispersion relation given by Eq. (48) in
general. However, when looking at gravity modes, the effect of
rotation can be neglected, so that Eq. (48) reduces to

ω2 = N̄2
(

k⊥d
2 coth(k⊥d) − 2 cos θ csch(k⊥d)

)
(50)

(Belyaev et al. 2015). This particular frequency (when m = 1)
is displayed in the bottom panel of Fig. 5 (light red dot-dashed
vertical line). Its position matches rather well the position of
the rightmost resonant peak, though we do not expect a perfect
match because we have neglected the effects of rotation and dif-
fusion, and we have modelled the interfaces as smooth rather
than discontinuous jumps, unlike the assumptions that went into
the derivation of this expression.

The dispersion relation above has exactly m roots, so that
there could be up to m resonant peaks corresponding to reso-
nances with free modes of the staircase, visible on the dissipation
spectra. We retrieve this property when using rigid boundary
conditions with more than one step. This is shown in Fig. 6,
which displays the same quantities as in the bottom panel of
Fig. 5 but using rigid boundary conditions in the case with m = 5
and ε = 0.5. The five roots of the dispersion relation written
above (Eq. (50)) are overplotted (grey dash-dotted vertical lines).
They approximately match the five resonant peaks on the dissipa-
tion spectra; these frequencies were found to match more closely
than the free modes of a uniformly stratified medium with rigid
conditions. The discrepancy can be explained, as in the previ-
ous case, by noting that Eq. (50) was derived in a non-rotating
plane-parallel model, assuming infinitesimally thin stably strat-
ified interfaces. This differs from our numerical set-up which
includes rotation, and contains stably stratified layers with a
finite size for numerical reason.

3.2.4. Changing the aspect ratio and the number of steps

Given the physical interpretation in the previous sections, we
expect the location of the resonant peaks to change with the size
of the convective layers (for resonances with short-wavelength
sub-inertial modes) and the size of the stably stratified layers (for
resonances with short-wavelength super-inertial gravito-inertial
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Fig. 6. Same as the bottom panel of Fig. 5, but using rigid boundary conditions in the case with m = 5 and ε = 0.5. Vertical grey dashed dotted
lines indicate the five eigenfrequencies calculated from Eq. (50). The vertical dotted lined at ω = 2Ω indicates the upper limit of the sub-inertial
frequency range.
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Fig. 7. Dissipation spectra obtained with m = 1 step for the different aspect ratios ε = 0.04 (solid blue line), 0.34 (green dashed line), and 1.00
(red dash-dotted line) and E = K = 10−5, using vertically periodic boundary conditions (top) and vertically rigid boundary conditions (bottom).
For comparison, the dotted light blue line corresponds to the case of a fully convective medium.

modes). We also expect this to be true for resonances with free
modes of the staircase since the corresponding dispersion rela-
tion, given by Eq. (50), explicitly depends on the size of the
convective layers d and the number of stably stratified interfaces
m. To illustrate this, we show how dissipation spectra are mod-
ified when we vary the aspect ratio ε, and the number of stably
stratified interfaces m.

Changing the aspect ratio. Figure 7 shows three different
dissipation spectra corresponding to the aspect ratios ε = 0.04
(solid blue line), 0.34 (green dashed line), and 1.00 (red dashed
dotted line), all with one step and E = K = 10−5. The top panel

corresponds to periodic boundary conditions, while the bottom
panel corresponds to rigid ones.

Let us first focus on the viscous dissipation rate obtained in
a fully convective medium (light blue lines). In the case with
periodic boundary conditions (top panel), a single resonant peak
is observed at ω = 2Ω, while in the case with rigid boundary
conditions (bottom panel), the forcing imperfectly excites a set
of short-wavelength inertial modes. This is similar to what we
have identified in the case of a uniformly stratified medium in
Sect. 2.5.

Let us consider the dissipation spectra corresponding to the
layered case. In the sub-inertial frequency range, resonant peaks
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Fig. 8. Dissipation spectra obtained with ε = 0.5 for different numbers of steps m = 1 (solid blue line), 2 (green dashed line), and 5 (red dashed
dotted) and E = K = 10−5, using vertically periodic boundary conditions (top) and vertically rigid boundary conditions (bottom). For comparison,
the dotted light blue line corresponds to the case of a fully convective medium.

are more numerous for small aspect ratios, while in the super-
inertial frequency range, resonant peaks are more numerous
for high aspect ratios (since larger wavelength modes can then
fit inside the stably stratified layer). In addition, the rightmost
resonant peak shifts to smaller frequencies as the aspect ratio
increases. This is consistent with Eq. (50), which tells us that ω
is an increasing function of d (the size of the convective layer).

Let us now compare the differences between boundary con-
ditions, i.e. between the two panels of Fig. 7. First, it can be seen
that the dependence of the main features of the spectra in term
of number of resonant peaks, their shapes, and their associated
frequencies, is qualitatively similar with both sets of boundary
conditions. However, we find some differences in the sub-inertial
range: for the same aspect ratio, more resonances with short-
wavelength inertial modes are observed in the case with periodic
boundary conditions.

Changing the number of steps. Figure 8 shows three dif-
ferent dissipation spectra corresponding to different numbers of
steps m = 1 (solid blue line), 2 (green dashed line), and 5 (red
dashed dotted line), again all with E = K = 10−5. In order to
keep the volume fraction occupied by the stably stratified layers
constant, we kept the aspect ratio constant (ε = 0.5) while chang-
ing the value of m. We note that changing the number of steps
while keeping the length scale over which the forcing term varies
(the size of the box), means changing the relative scale between
the size of the steps and the forcing. The top panel corresponds
to periodic boundary conditions while the bottom panel corre-
sponds to rigid ones. In both panels, the viscous dissipation rate
in a fully convective medium is displayed as the light blue dotted
line.

The resonances with short-wavelength inertial waves (in the
convective layers), and with sub-inertial gravito-inertial waves
(in the stably stratified interfaces), both become weaker and less
numerous as we increase the number of steps (see Fig. 8). This
is partly because the forcing that we have adopted varies on
the box scale, so it will most efficiently excite waves that vary
on this length scale, and it will excite the shorter-wavelength
waves much less efficiently. It is also partly due to the increasing
damping efficiency of viscosity and thermal diffusion for these
short-wavelength waves.

Let us now compare the differences between boundary con-
ditions, i.e. between the two panels of Fig. 8. First, we find
the same differences in the sub-inertial range as mentioned in
the paragraph above. In the gravito-inertial frequency range, the
strength and number of the resonant peaks that are observed is
qualitatively similar. However, in the frequency range of gravity
modes, the following major differences arise. In the case with
periodic boundary conditions (top panel of Fig. 8), the forcing
only excites one global mode of the staircase, that is on the box
scale. Thus, only one resonant peak corresponds to a resonance
with a free gravity mode of the staircase. We note that the cor-
responding frequency is shifted to lower frequencies when the
number of steps is increased because the size of the convective
steps, d, then gets smaller (see discussion above). On the other
hand, in the case of rigid boundary conditions (bottom panel of
Fig. 8) the forcing excites exactly m resonances that correspond
to the m free modes of the staircase described in Sect. 3.2.3.
Understanding why these m resonances do not appear separately
when adopting vertically periodic boundary conditions requires
further investigation, but we think this is unlikely to be the case
in a more realistic calculation.
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Fig. 9. Frequency-averaged dissipation rates as a function of the aspect ratio (left), of the number of steps (middle), and of the ratio S̄ Ω = N̄/2Ω
(right), using vertically periodic boundary conditions. These results were obtained for one stably stratified interface and E = K = 10−5. In each
panel the orange filled circles correspond to the total dissipation rate, while its viscous and thermal contributions are represented by the empty
red triangles and blue squares, respectively. On the y-axis, the frequency-averaged dissipation rates in the layered case, ¯〈D〉, is normalised by the
frequency-averaged dissipation rate of the fully convective case, ¯〈D〉(c), which is indicated by the horizontal blue dashed line. We adopted a forcing
amplitude that is proportional to ω for these calculations.
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Fig. 10. Same as Fig. 9, but using vertically rigid boundary conditions.

3.3. Exploration of frequency-averaged dissipation rates in
parameter space

We have so far explored the response of a layered density
structure to an imposed forcing, and we have given a physi-
cal interpretation for each of the corresponding resonances with
enhanced dissipation. Now we explore how the resulting dissipa-
tion in a region of layered semi-convection compares with that
in a fully convective medium. In this section, we thus compute
frequency-averaged dissipation rates with a forcing amplitude
that is proportional to the tidal frequencyω. This is a more realis-
tic model for the excitation of tidal waves because the amplitude
of the forcing term, which drives tidal waves, contains two terms
that scale as 2Ωω and ω2 (see e.g. Ogilvie 2005, 2014, and dis-
cussion in Sect. 2.4.3). We choose here to keep the one that is
dominant in the regime of low tidal frequencies. We keep in
mind that the term inω2 enhances the contribution of resonances
that are excited at higher frequencies, namely resonances with
short-wavelength gravito-inertial modes, and gravity-like modes
(which are excited at frequencies ω > 2Ω, see Sect. 3.2). These
are specific to the layered case. We note that we have explored
calculations for which the forcing scales as ω2 using a cut-off
frequency to cut the non-resonant part of the spectra. These gave
the same qualitative trends as for an ω forcing described below.

In order to unravel the influence of the layered structure
alone, we successively focus on three quantities that parametrise

the layered structure: (ε,m, N̄/2Ω). We then compute frequency-
averaged dissipation rates according to Eq. (22), and quantify
how a density staircase modifies the dissipation over a fully
convective medium.

3.3.1. Dependence on the aspect ratio

First, we focus on a structure containing one stably stratified
interface, and we vary its size. We do this by varying the aspect
ratio ε, defined by Eq. (33). It is unclear what the aspect ratio
should be in planetary interiors, though it is likely to be very low.
We note that Leconte & Chabrier (2012) found that the condition
ε < 1 was necessary in order for the layered structure to be stable.
Here, we explore values ranging from 0.1 to 1. As we decrease ε,
the amplitude of the buoyancy bump (N0) must increase accord-
ing to Eq. (35) in order to keep the mean buoyancy frequency
N̄ = 10 × (2Ω) constant over the domain.

The corresponding frequency-averaged quantities can be
seen in the left panel of Fig. 9 for periodic boundary condi-
tions, and of Fig. 10 for rigid boundary conditions. The results
of these calculations (represented by orange filled circles for
the total dissipation, and blue squares and red triangles for the
viscous and thermal dissipation rates) have been normalised
by the frequency-averaged dissipation rate of the fully convec-
tive case, which is also indicated by the horizontal blue dashed
lines.

A82, page 13 of 17

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201833674&pdf_id=0
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201833674&pdf_id=0


A&A 626, A82 (2019)

The qualitative behaviour obtained with the two sets of
boundary conditions is very similar and is as follows. The
frequency-averaged viscous (blue triangles) and thermal (red
squares) dissipation rates do not show a clear monotonic trend.
The total frequency-averaged dissipation is approximately con-
stant for ε < 0.6, and is apparently independent of ε in the
astrophysically relevant case in which ε → 0, but it exhibits
oscillatory behaviour (with a tendency for higher dissipation)
for higher aspect ratios. When comparing the layered case
to the fully convective case, our main conclusion is that the
frequency-averaged dissipation is higher, including layered semi-
convection, for all aspect ratios considered here. This occurs
because a layered structure permits more resonances than a fully
convective medium, and these contribute to increasing the result-
ing dissipation. In particular, the additional resonances with
short-wavelength gravito-inertial, and free gravity modes (which
are specific to the layered structure), contribute to the frequency-
averaged dissipation to a greater extent than the modes in the
sub-inertial range, and the latter are those which are preferably
excited in a fully convective medium.

Finally, we intuitively expect that the viscous and thermal
dissipation rates in the layered case may be higher when ν and κ
are decreased to values that are more relevant to planetary interi-
ors, since more modes are then available to be resonantly excited.
However, we would expect the shortest wavelength modes to be
excited less efficiently, so the dominant contribution to the dis-
sipation is probably from the global modes that are excited even
as ν and κ are decreased.

3.3.2. Dependence on the number of steps m

We now vary the number of stably stratified layers in the domain,
m. We recall that this also has the effect of changing the ratio
between the characteristic scale of the forcing and the size of
the steps. It is unclear what number of steps could exist in an
extended region of layered semi-convection in deep planetary
interiors. Leconte & Chabrier (2012) estimate that it could lie
anywhere in a range 102 . m . 109, but ab initio modelling
of layered semi-convection in the context of planetary evolution
models is very challenging (e.g. Vazan et al. 2016, 2018). Here
we explore values from 1 to 5 because calculations with much
larger m are computationally very demanding. As we increase
m, we keep the aspect ratio constant, ε = 0.5. As a result, the
relative size of the layers to the size of the domain decreases
in order to keep the mean stratification N̄ constant and equal to
10 × (2Ω).

The corresponding frequency-averaged quantities can be
seen in the middle panels of Fig. 9 for periodic boundary con-
ditions, and Fig. 10 for rigid boundary conditions. The results of
these calculations (orange filled circles) have been normalised
by the frequency-averaged dissipation rate of the fully convec-
tive case, which is also indicated (blue dashed horizontal lines).
Our main conclusion is that a region of layered semi-convection
is more dissipative (in the frequency-averaged sense) than a fully
convective medium for the range of m that we have considered
here.

3.3.3. Dependence on the ratio N/2Ω

Finally, we focus on the influence of the parameter S̄ Ω = N̄/2Ω,
which characterises the relative strength of the buoyancy force
to the Coriolis force. What value this parameter could take in
the deep interiors of giant planets is unknown. Here we vary it
from 10−2 (weakly stratified and/or fast rotator) to 102 (strongly

stratified and/or slow rotator) by varying the mean buoyancy
frequency N̄, and thus the amplitude N0, through the relation
given by Eq. (35). This is done for one stably stratified interface
with an aspect ratio ε = 0.2 and diffusivity coefficients chosen
such that E = K = 10−5.

The corresponding frequency-averaged quantities can be
seen in the right panel of Fig. 9 for periodic boundary condi-
tions, and of Fig. 10 for rigid boundary conditions. The results
of these calculations (orange filled circles) have been normalised
by the frequency-averaged dissipation rate of the fully convective
case, which is also indicated (blue dashed horizontal lines).

The qualitative behaviour obtained with the two sets of
boundary conditions is very similar and is as follows. Both vis-
cous and thermal frequency-averaged dissipation rates show a
clear increase when N̄ > 2Ω. This can be explained by noting
that when N̄ increases (and thus N0 increases, as we can see from
Eq. (35)), the resonances with short-wavelength gravito-inertial
waves and free gravity modes of the staircase get stronger.

We recall that the free gravity mode given by Eq. (50) is
such that ω is proportional to N̄ (by some factor depending on
wave number and the size of the steps). Thus, the correspond-
ing resonant peak, which is potentially the main contribution
to the dissipation (see discussion in Sect. 4.1), moves to higher
frequency linearly with N̄. If N̄/2Ω is less than 1, this reso-
nant peak falls into the sub-inertial frequency range, and the
associated dissipation is weak compared to the ones associated
with the resonances with short-wavelength inertial modes. In
this case, considering the medium as fully convective becomes a
good approximation to quantify the dissipation. In a giant planet,
we expect that this could be the case if the equilibrium layered
structure has very large convective steps (of the order of a scale
height) and/or if the planet is rotating very rapidly. In this sense,
the parameter N̄/2Ω is the control parameter that determines the
relative importance of the effects of the layered structure com-
pared to a fully convective medium, with a layered structure
being more dissipative when this ratio is higher than one.

4. Conclusions, discussion, and future work

A region of layered semi-convection consists of density stair-
cases, in which convective layers are separated by thin stably
stratified interfaces. We have presented exploratory linear cal-
culations to study how layered semi-convection, which is poten-
tially present in giant planet interiors, affects the rates of tidal
dissipation. We adopted a local Cartesian model to study the
dissipation of short-wavelength internal (gravito-inertial) waves
excited in a region of layered semi-convection by a gravitational
tidal-like forcing. We have computed the response of such a den-
sity structure, and we have provided a physical interpretation for
each of the associated resonances with enhanced dissipation. We
also computed frequency-averaged dissipation rates to determine
how dissipative a semi-convective medium compares to a fully
convective medium as the various parameters of our model are
varied. Our calculations were undertaken with two different and
complementary sets of boundary conditions: vertically periodic,
relevant to study a portion of a vertically extended region of
layered semi-convection, and vertically rigid (and stress-free),
equivalent to a plane-parallel model of a region filled with
layered semi-convection. This was done assuming horizontal
periodicity in each case, and the results lead to modifications
of resulting global modes.

Our primary intended application was to understand tidal
dissipation in giant planets and the consequent evolution of
their natural satellite systems, though our results could also be
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relevant for tides in short-period extra-solar planets interacting
with their host stars. Our main conclusions are the following:

– A region of layered semi-convection possesses a richer set
of free modes than a fully convective medium, which is the
model that is usually adopted for giant planet deep interiors.
As a result, more resonances can potentially be excited com-
pared to a convective medium. This makes it more likely for
a satellite or host star to enter a resonance with enhanced
tidal dissipation, potentially by several orders of magnitude.

– These resonances are more broadly distributed over the fre-
quency spectrum compared to a fully convective medium.
Short-wavelength inertial modes can be excited (like in a
fully convective medium), but we have also identified short-
wavelength gravito-inertial modes (localised within the sta-
bly stratified interfaces, though we expect these to be very
thin in reality), and gravity modes (g-modes), influenced by
the mean stratification, characterised by the mean buoyancy
frequency N̄. Thus, the frequency range in which we expect
resonances to be excited is extended from −2Ω . ω . 2Ω
in a convective medium to −N̄ . ω . N̄ in a medium with
layered semi-convection.

– Extrapolating the trends that we have observed, additional
resonances are expected for lower diffusivities and thinner
interfaces, potentially leading to an enhancement in the rates
of tidal dissipation over an even wider frequency range in the
astrophysical regime.

4.1. Consequences for tidal dissipation in giant planets

Our calculations within this local Cartesian model cannot be
used to directly make quantitative predictions for the rates of
tidal dissipation in giant planets because the forcing that we
have adopted is highly idealised. Nevertheless, we have clearly
identified some of the most important physical effects that may
lead to higher dissipation in a region of layered semi-convection
compared to a fully convective medium.

We have seen that the dissipation is higher for a wider
range of frequencies in the layered case compared with a fully
convective medium in our model. This corresponds with the
excitation of particular global modes that are resonant with
our adopted forcing. Adopting a realistic dependence for the
forcing amplitude on the tidal frequency, we have seen that
the frequency-averaged dissipation rates exhibited a clear trend
to higher dissipation in the layered case versus the fully con-
vective case because the primary contribution to the averaged
dissipation is due to the resonances with free gravity modes.

In reality, the scale over which the equilibrium tide (which
acts as an effective forcing for tidal waves) varies should be much
larger than the size of the box that we model, and it should be
radially node-less. For clarity (and numerical convenience), in
this study we assumed the forcing to be periodic in the local
radial direction, which has the effect of artificially enhancing the
strength of this resonance with the box-scale inertial mode if the
medium is fully convective, but only when periodic boundary
conditions are assumed. This is indeed a drawback from our local
analysis, since in the realistic tidal problem the forcing should
vary on a large length scale compared to the size of the semi-
convective layers. When considering the realistic tidal problem,
a possibility is that the resonances with short-wavelength iner-
tial and gravito-inertial modes (described in Sect. 3.2) could be
significantly weakened because the coupling between the large-
scale tidal forcing and the small-scale oscillation modes could
be decreased. However, we expect that the astrophysically rele-
vant lower diffusivities would partly counteract this effect since

less damping of the resonances would be expected. On the other
hand, the resonances with the free gravity modes of the staircase
(which have an internal gravity wave-like character with respect
to the mean stratification) should remain robust and will prob-
ably be the most significant contribution to the dissipation in
layered semi-convection regions.

In our model we also considered the effect of adopting rigid
boundary conditions in the vertical direction, which may be a
closer approximation to the global problem in which an extended
envelope would be filled with layered semi-convection. We found
that this had the effect of modifying the resonances with free
gravity-modes of the staircase, which were then more numerous
when additional layers were included. This was consistent with
the work of Belyaev et al. (2015) and Paper I. Our other main
conclusions were independent of the boundary conditions that
we adopted in the vertical direction.

While this paper constitutes a necessary first step, in order to
compute astrophysically and quantitatively meaningful tidal dis-
sipation rates as a function of the structural parameters of the
region of layered semi-convection, it is crucial to extend this
study to spherical geometry. This will enable us to consider a
more realistic situation where curvature effects are included and
the tidal gravitational forcing can be included self-consistently.
Performing a calculation along these lines in spherical geometry
will be the focus of a future paper.

In the near future, as we hope that our understanding of giant
planet internal structures will continue to improve (thanks espe-
cially to the Juno spacecraft), it is important to be able to include
the most important structural details and their effects on the rates
of tidal dissipation. We recall that, based on astrometric obser-
vations spanning more than a century, tidal dissipation in Jupiter
and Saturn has been found to be much higher than previously
thought (e.g. Lainey et al. 2017). These results have not yet been
fully explained, motivating us to consider more sophisticated
tidal models. However, we note that several mechanisms have
already been proposed to explain high tidal dissipation rates in
giant planets. Ogilvie & Lin (2004) have studied in detail the
frequency-dependence of the dissipation of tidal inertial waves
by turbulent friction in convective envelopes (see also Auclair
Desrotour et al. 2015; Mathis et al. 2016). Moreover, Remus
et al. (2012, 2015) have studied the visco-elastic dissipation of
a possible rocky/icy core in central regions of giant planets, for
different rheologies and tidal frequencies. It has then been shown
by Guenel et al. (2014) that these two potential sources of tidal
dissipation could be of comparable strengths depending on the
rheology of the core, while the viscous friction in a solid core
was found to be compatible with the tidal dissipation rates and
frequency-dependence found by Lainey et al. (2017) in Saturn. In
particular, these recent works point out very clearly the impor-
tance of being able to carefully take into account each type of
dissipation mechanism. To do so, it is in turn crucial to rely on
realistic models of giant planet interiors. Finally, Fuller et al.
(2016) have studied the possibility that some moons of Jupiter
or Saturn could migrate outwards while being locked in a res-
onance (for which the dissipation is very efficient) with a tidal
gravito-inertial mode of the central giant planet, leading to fast
outward migration.

This paper thus represents a first step towards understand-
ing how layered semi-convection, which is potentially present in
giant planets, affects the rates of tidal dissipation. We tentatively
conclude that layered semi-convection, if present in giant plan-
ets, could play an important role in enhancing the rates of tidal
dissipation in giant planets, alongside the mechanisms that have
been described in the previous paragraph. These may be key to
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explaining the high tidal dissipation rates observed by Lainey
et al. (2009, 2012, 2017) and Polycarpe et al. (2018) in Jupiter and
Saturn, and could be important in the evolution of short-period
extrasolar planetary systems.

4.2. Link between transmission and dissipation

In Paper I, we showed that short-wavelength internal (and iner-
tial) waves are only efficiently transmitted across a region of
layered semi-convection if they are resonant with a free mode of
the staircase. Here, we showed that free modes of the staircase
can be excited by a gravitational tidal-like forcing, leading to
enhanced dissipation. It is also interesting to note that a region of
layered semi-convection lying below a convective region could
act as a rigid wall for waves that do not excite one of the free
modes. Those waves would then only dissipate their energy in
the overlying convective region. However, we expect tidal waves
that excite a free mode of the staircase to be efficiently transmit-
ted, and thus to be able to reach the deepest layers of the fluid
envelope where they may be dissipated and could heat the deep
interior.

4.3. Prospects and future work

Further work is required to explore and confirm the influ-
ence of layered semi-convection on tidal dissipation in global
models. Other mechanisms should also be taken into account,
such as differential rotation (Baruteau & Rieutord 2013; Guenel
et al. 2016a,b), magnetic fields (Barker & Lithwick 2014; Wei
2016, 2018), and the impact of rotation on the semi-convective
background structure (Moll & Garaud 2017).

In the context of the ongoing Juno mission, these two phys-
ical ingredients have recently been shown to be of significant
importance in Jupiter. New constraints obtained on Jupiter’s
zonal flows indeed suggest that differential rotation is signifi-
cant in a shell extending down to 3000 km in radius. The deeper
interior is expected to rotate as a solid body due to the action
of magnetic stresses associated with an increase of the electric
conductivity of the gas at this location (Guillot et al. 2018). In
the near future, the Juno mission should provide additional con-
straints on the internal structure of Jupiter, and its magnetic field
(Connerney et al. 2018). These could hopefully be extrapolated
to further constrain other giant planets (including hot Jupiters)
and brown dwarfs. Including additional physical effects, moti-
vated by these observational constraints, is currently the best way
to build more realistic tidal models of systems involving such
bodies.
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Appendix A: Derivation of the forced Poincaré
equation

The linearised system we consider when we adopt the Boussi-
nesq approximation is given by Eqs. (5)–(10). The aim of this
appendix is to derive the forced Poincaré equation.

First, taking the combination ∂y(Eq. (7)) − ∂z(Eq. (6)) gives

Dν

(
∂w

∂y
− ∂v

∂z

)
− ( f · ∇)u =

∂b
∂y

+ [∇ × F]x, (A.1)

where [∇ × F]x ≡ (∇ × F) · êx = ∂yFz − ∂zFy, and f =
(
0, f̃ , f

)
.

Then, taking the combination ∂z(Eq. (5)) − ∂x(Eq. (7)) and using
Eq. (9) gives

Dν

(
∂u
∂z
− ∂w

∂x

)
− ( f · ∇)v = − ∂b

∂x
+ [∇ × F]y, (A.2)

where [∇ × F]y ≡ (∇ × F) · êy = ∂zFx − ∂xFz.

Then, taking the combination ∂x(Eq. (6)) − ∂y(Eq. (5)) and
using Eq. (9) gives

Dν

(
∂v

∂x
− ∂u
∂y

)
− ( f · ∇)w = [∇ × F]z, (A.3)

where [∇ × F]z ≡ (∇ × F) · êz = ∂xFy − ∂yFx.
Then, by taking the combination DκDν( ∂y(Eq. (A.1)) −

∂x(Eq. (A.2))) and using Eqs. (9), (10), and (A.3), we finally
obtain an equation for the vertical component of the velocity
w,

DκD2
ν∇2w + Dκ( f · ∇)2w + Dν

[
N2∇2

⊥
]
w = O · (∇ × F), (A.4)

where ∇2
⊥ ≡ ∂xx + ∂yy, Dα = ∂t − α∇2, and

O ≡ Dκ

 Dν ∂y
−Dν ∂x
− f · ∇

 . (A.5)
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