Fast Ca2+ responses in astrocyte end-feet and neurovascular coupling in mice
Barbara Lykke Lind, Sanne Barsballe Jessen, Micael Lønstrup, Charlène Joséphine, Gilles Bonvento, Martin Lauritzen

To cite this version:

HAL Id: cea-02159356
https://hal-cea.archives-ouvertes.fr/cea-02159356
Submitted on 18 Jun 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Fast Ca2+ responses in astrocyte end-feet and neurovascular coupling in mice

Barbara Lykke Lind
Sanne Barsballe Jessen
Micael Lønstrup
Charlène Joséphine
Gilles Bonvento
Martin Lauritzen

1Department of Neuroscience and Center for Healthy Aging, University of Copenhagen, Denmark
2Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Département de la Recherche Fondamentale (DRF), Institut de Biologie François-Jacobs, Molecular Imaging Research Center (MIRCeN), CNRS UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
3Department of Clinical Neurophysiology, Glostrup Hospital, Denmark

Correspondence
Barbara Lykke Lind, Center for Neuroscience, Maersk Tower niveau 4, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark (or) DNF, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Suisse.
Email: barbarall@sund.ku.dk (or) BarbaraLykke.Lind@unil.ch

Funding information
The Lundbeck Foundation; The NOVO-Nordisk Foundation; The Danish Medical Research Council; The NORDEA Foundation for the Center for Healthy Aging; Fondation Leducq

Abstract
Cerebral blood flow (CBF) is regulated by the activity of neurons and astrocytes. Understanding how these cells control activity-dependent increases in CBF is crucial to interpreting functional neuroimaging signals. The relative importance of neurons and astrocytes is debated, as are the functional implications of fast Ca2+ changes in astrocytes versus neurons. Here, we used two-photon microscopy to assess Ca2+ changes in neuropil, astrocyte processes, and astrocyte end-feet in response to whisker pad stimulation in mice. We also developed a pixel-based analysis to improve the detection of rapid Ca2+ signals in the subcellular compartments of astrocytes. Fast Ca2+ responses were observed using both chemical and genetically encoded Ca2+ indicators in astrocyte end-feet prior to dilation of arterioles and capillaries. A low dose of the NMDA receptor antagonist (5R,10s)-(-)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine-hydrogen-maleate (MK801) attenuated fast Ca2+ responses in the neuropil and astrocyte processes, but not in astrocyte end-feet, and the evoked CBF response was preserved. In addition, a low dose of 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), an agonist for the extrasynaptic GABAA receptor (GABA\textsubscript{A}R), increased CBF responses and the fast Ca2+ response in astrocyte end-feet but did not affect Ca2+ responses in astrocyte processes and neuropil. These results suggest that fast Ca2+ increases in the neuropil and astrocyte processes are not necessary for an evoked CBF response. In contrast, as local fast Ca2+ responses in astrocyte end-feet are unaffected by MK801 but increase via GABA\textsubscript{A}R-dependent mechanisms that also increased CBF responses, we hypothesize that the fast Ca2+ increases in end-feet adjust CBF during synaptic activity.

KEYWORDS
astrocyte end-feet, calcium imaging, blood flow regulation, in vivo, pixel detection

1 INTRODUCTION

Changes in brain activity are accompanied by changes in brain metabolism and perfusion. This relationship is the basis of functional neuroimaging techniques that use deviations in cerebral blood flow (CBF) or blood oxygenation level-dependent signals to track brain activity (Lauritzen, Mathiesen, Schaefer, & Thomsen, 2012; Logothetis, Pauls, Augath, Trinath, & Oeltermann, 2001; Raichle & Mintun, 2006). Activity-dependent increases in CBF are thought to be regulated by Ca2+ increases in neurons and astrocytes (Attwell et al., 2010; Devor et al., 2003; Gordon, Choi, Rungta, Ellis-Davies, & MacVicar, 2008; Howarth, 2014; Iadecola & Nedergaard, 2007; McCaslin, Chen, Radoshevich, Cauli, & Hillman, 2011; Petzold, Albeau, Sato, & Murthy, 2008). Astrocyte processes are in close contact with synapses (Nimmerjahn, 2009), and astrocyte end-feet cover neighboring vessels (Kacem, Lacombe, Seylaz, & Bonvento, 1998; McCaslin et al., 2011). Thus, astrocytes are optimally placed to link increases in synaptic activity to increases in CBF. The timing and reliability of astrocyte Ca2+ responses are controversial (Nizar et al., 2013; Winship, Plaa, & Murphy, 2007), but we have reported that the majority of astrocytes have fast Ca2+ responses prior to hemodynamic responses within 300 ms of synaptic activation (Lind, Brazhe, Jessen, Tan, & Lauritzen, 2013). The mechanisms underlying the fast change in Ca2+ in astrocytes have not been clarified, though several have been proposed (Verkhratsky, ...
Rodríguez, & Parpura, 2012; Volterra, Llaudet, & Savtchouk, 2014). In vivo astrocytic Ca$^{2+}$ responses have been studied primarily in the astrocyte soma, though the dynamics of Ca$^{2+}$ responses in the astrocyte processes and end-feet differ from somatic responses (Bindocci et al., 2017; Kanemaru et al., 2014; Reeves, Shigetomi, & Khakh, 2011; Srinivasan et al., 2015; Stobart et al., 2016). In addition, astrocytes can be compartmentalized, with one part of a cell responding independently from its other parts (Bindocci et al., 2017; Shigetomi et al., 2013). Fast Ca$^{2+}$ responses in astrocyte processes may influence synaptic transmission, affecting the activity in nerve networks (Di Castro et al., 2011; Panatier et al., 2011). Stimulus-induced Ca$^{2+}$ responses in astrocyte end-feet are of great interest for neurovascular coupling because they have been found to influence vascular diameter in slices (Dunn, Hill-Eubanks, Liedtke, & Nelson, 2013; Gordon et al., 2008) and to occur prior to vasodilatation in vivo (Lind et al., 2013; Otsu et al., 2015; Petzold et al., 2008).

Here, we compare the fast Ca$^{2+}$ responses in neuropil and astrocyte processes to those in astrocyte end-feet during whisker pad stimulation of the mouse barrel cortex. Importantly, the astrocytic source of the fast Ca$^{2+}$ changes was verified using a genetically encoded, astrocyte-specific Ca$^{2+}$ indicator. Fast Ca$^{2+}$ increases in neuropil and astrocyte processes depend on preserved NMDA receptor (NMDAR) activity but were unnecessary for the development of a CBF response. In contrast, local Ca$^{2+}$ increases in astrocyte end-feet were unaffected by the NMDAR antagonist (5R,10s)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine-hydrogen-maleate (MK801) but increased with exposure to a low dose of 4,5,6,7-tetrahydroisoxazolo [5,4-c]pyridin-3-ol (THIP), which tonically activates extrasynaptic GABA receptors (GABARs). The same dose of THIP also enhanced the CBF response. These in vivo data support the participation of fast Ca$^{2+}$ responses in astrocyte end-feet in the translation of synaptic input into a vascular signal.

2 | MATERIALS AND METHODS

2.1 | Experimental setup

All procedures involving animals were approved by the Danish National Ethics Committee according to the guidelines set forth in the European Council’s Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes and to the ARRIVE guidelines. Forty-seven male white Naval Medical Research Institute mice [8 weeks old, CrI/NMRI (male)] were surgically prepared for experiments, and a craniotomy was performed. A total of 37 of these animals were used for the two-photon microscopy experiments. An additional 10 animals were used to study blood flow in a separate experimental setup.

The mouse sensory barrel cortex was activated by electrical stimulation of the contralateral ramus infraorbitalis of the trigeminal nerve in trains of 15 s at 0.5–5 Hz. The trains of stimulations were repeated three times for each frequency in each animal. In three mice, air puffs lasting 0.2 ms were applied to the whiskers at similar stimulation frequencies. In the whisker cortex layer II/III, the extracellular local field potentials (LFPs) were recorded to measure field excitatory post-synaptic potential (fEPSP). The hemodynamic responses were measured by intrinsic optical signals or monitored using laser Doppler flowmetry. Ca$^{2+}$ imaging was performed using two-photon microscopy. In 27 mice, the tissue was loaded with the red astrocyte-specific dye sulforhodamine 101 (SR101) in combination with the green fluorescent Ca$^{2+}$ indicator Oregon Green Bapta (OGB)-1/AM (OGB-1/AM), while in 10 mice, a genetically encoded green fluorescent GCaMP6f Ca$^{2+}$ indicator under the astrocyte-specific glial fibrillary acidic protein promoter was virally introduced 2–4 weeks prior to the imaging. For further information on the animal handling, viral injections, immunohistochemistry, stimulation, electrophysiology, cortical blood flow, two-photon imaging, post-sampling analysis of vessel diameter, and details on image analysis, refer to the Supporting Information.

2.2 | Image analysis

A series of OGB/SR101 images were taken before and during whisker pad stimulation. Several square sections were cropped from each image, each containing either an astrocyte process or astrocyte end-feet (Figure 1a and Supporting Information Fig. S1a). The series of cropped images was rearranged as previously described (Lind et al., 2013) using the stimulation time as a time lock; data points were superimposed to form a cloud of data points as though they were obtained after a single stimulation (Supporting Information Fig. S1b). An average series of images was interpolated from the green Ca$^{2+}$ indicator channel and red SR101 channel of the original image sections (Supporting Information Fig. S1c). Areas were identified as astrocytic or non-astrocytic based on the level of SR101 staining in the interpolated image (Supporting Information Fig. S1d). We used a threshold of 1 standard deviation (s.d.) to separate astrocytic from nonastrocytic pixels because interpolation of the signal reduces variation. The precision of this threshold was confirmed by evaluating the spread of SR101 loading in astrocytic versus nonastrocytic pixels (Figure 1b) in 23 series of image frames from six animals.

The SR101-based selection of pixels of interest (POIs) was repeated in each image in the interpolated time series. Thus, all pixels within each frame were reevaluated as part of either the astrocytic or nonastrocytic POIs. The fluorescence activity in the green channel reflected Ca$^{2+}$ levels and the mean value was calculated for each class of pixels and taken to represent the level of Ca$^{2+}$ inside or outside the entire astrocyte structure at a given time point (Supporting Information Fig. S1e). The average fast Ca$^{2+}$ responses to whisker pad stimulation could be evaluated because the Ca$^{2+}$ responses were visualized by linear interpolation over data points from the same POI, image to image (Supporting Information Fig. S1f). The mean fluorescence and s.d. during the baseline period was used to normalize the values in the entire time series. The normalization was calculated as the percentage of the baseline level ($\Delta F/F_0$) and the s.d. of baseline activity ($\Delta F_{\text{baseline}} = \Delta F/F_0 \times \text{s.d.}$). Next, the fast Ca$^{2+}$ response was analyzed with regard to timing, maximum peak amplitude, and whether the response was significantly larger than baseline, defined as at least four data points above 2 s.d. of
baseline activity. The response was smoothed to enable the estimation of onset time by calculating the maximum value in the second derivative, and of decay time by determining when the signal dropped below baseline levels. Analytical software was developed using Matlab™.

2.3 | Drug application

CNQX, MK801, and THIP were dissolved in artificial cerebrospinal fluid and applied by placing drops of the dissolved compound on the agarose covering the cortex. Further information about these drugs is given in the Supporting Information.

2.4 | Statistical analysis

The drug effects on fEPSP and CBF responses, as well as the size and timing of fast Ca\(^{2+}\) signals, were analyzed using three-way analysis of variance (ANOVA; R, R Development Core Team 2010; R Foundation for Statistical Computing, Vienna, Austria) on the range of stimulation frequencies applied (0.5–5 Hz), followed by a paired t-test for significance at a specific stimulation frequency. The significance level was set at a two-tailed \(\alpha\) of 0.05. In some cases, data were log-transformed before analysis to obtain a normal distribution. All studies were paired to ensure that the control measurements were carried out in the same animals that would later be exposed to a drug.

Part of the dataset for 24 of the 37 mice examined by two-photon microscopy imaging was published in two previous papers (Jessen et al., 2014; Lind et al., 2013). Those studies involved another analytical method for evaluating Ca\(^{2+}\) changes, and neither reported the drug effects on fast Ca\(^{2+}\) responses in astrocyte processes or end-feet.

2.5 | Comparison of the ROI and POI methods

To compare the sensitivity of the POI and region of interest (ROI) methods to correctly select astrocytic pixels, the two approaches were applied to a dataset in which the ideal classification of pixels was known. This dataset was developed through manual evaluation of 12 different series of frames in four animals, and each astrocytic pixel was designated based on a combination of visually selecting adjacent pixels and the intensity of SR101 loading. A total of 732 frames were reviewed and then submitted to automatic pixel selection by the ROI and POI methods. The percent of astrocytic pixels correctly identified by each method was calculated, as well as the percent of pixels selected by either method that were not astrocytic (Figure 1d).

3 | RESULTS

We previously provided evidence for fast stimulation-induced Ca\(^{2+}\) responses in astrocyte structures in layer II/III of the whisker barrel cortex using the Ca\(^{2+}\) indicator OGB (Lind et al., 2013). In that study, our analysis was based on the mean fluorescence activity within ROIs selected based on staining with the astrocyte-specific marker SR101.
cell morphology, and connection to blood vessels. With regard to smaller structures, such as astrocyte processes and end-feet, this procedure may be less satisfactory because of the imperfect fit of a ROI and the low number of pixels measured in the structure. To address this issue, we developed an analytical method by which POIs are defined based on the intensity of SR101 detected in individual pixels (Supporting Information Fig. S1). This approach increased the sensitivity, as more pixels in a small structure could be included in the study.

The first step was to isolate a rectangular section of image that contained only the astrocyte structure to be evaluated (Figure 1a). This step was necessary because the uptake of dye is sometimes dissimilar over a field of view and between astrocyte somas and processes. Thus, with the inclusion of only a single astrocyte structure within the section, the algorithm that defined the pixels with significant SR101 levels was applied to more homogeneous SR101 staining and achieved greater accuracy. All pixels with significant SR101 levels were classified as astrocytic, whereas the rest were considered to be nonastrocytic.

For each section of an image, a separation value was determined for the SR101 mean; this outcome was what we had aimed for to minimize the number of nonastrocytic pixels among astrocytic pixels. Next, for each pixel, we compared the size of the Ca2+ responses during whisker pad stimulation and the level of SR101 detected during that response (Figure 1c). We included this comparison because of the unavoidable contribution of OGB emission to the SR101 signal; OGB emits light in the red spectrum even though its primary emission is in the green spectrum. No relationship was found between detected SR101 levels and the size of the shift in OGB emission, indicating that no pixels changed status from nonastrocytic to astrocytic as a result of enhanced Ca2+ levels during stimulation.

For a direct comparison of the accuracy of the POI and ROI methods, we applied both to a set of data in which the precise numbers and positions of astrocytic pixels were predefined by manual/visual scoring (Figure 1d). The POI method had significantly higher sensitivity (n = 12, p < 1 × 10-3, t-test) by selecting 57.4\% of the selected pixels with the accuracy of this value was verified by comparing the distribution of SR101 levels in two clusters of pixels within the same image section containing either only astrocytic or non-astrocytic pixels (Figure 1b).

In the investigated series of image sections, we found that the separation value matched the cross point between the two distributions or had a tendency toward the SR101 mean; this outcome was what we had aimed for to minimize the number of nonastrocytic pixels among astrocytic pixels. Next, for each pixel, we compared the size of the Ca2+ responses during whisker pad stimulation and the level of SR101 detected during that response (Figure 1c). We included this comparison because of the unavoidable contribution of OGB emission to the SR101 signal; OGB emits light in the red spectrum even though its primary emission is in the green spectrum. No relationship was found between detected SR101 levels and the size of the shift in OGB emission, indicating that no pixels changed status from nonastrocytic to astrocytic as a result of enhanced Ca2+ levels during stimulation.

For a direct comparison of the accuracy of the POI and ROI methods, we applied both to a set of data in which the precise numbers and positions of astrocytic pixels were predefined by manual/visual scoring (Figure 1d). The POI method had significantly higher sensitivity (n = 12, p < 1 × 10-3, t-test) by selecting 57.4\% of the pixels pre-defined as astrocytic; the ROI method selected only 40.4\% ± 7.4\%. However, the specificities of the two methods were comparable. Of the pixels selected by the POI method, 21.3\% ± 4.9\% were not predefined as astrocytic; the ROI method selected only 4.5\% of the pixels pre-defined as astrocytic.

For a direct comparison of the accuracy of the POI and ROI methods, we applied both to a set of data in which the precise numbers and positions of astrocytic pixels were predefined by manual/visual scoring (Figure 1d). The POI method had significantly higher sensitivity (n = 12, p < 1 × 10-3, t-test) by selecting 57.4\% ± 4.5\% of the pixels pre-defined as astrocytic; the ROI method selected only 40.4\% ± 7.4\%. However, the specificities of the two methods were comparable. Of the pixels selected by the POI method, 21.3\% ± 4.9\% were not predefined as astrocytic; this was true for 27.2\% ± 8.5\% of the selected pixels with the ROI methods (Figure 1e).

Next, we evaluated the fast Ca2+ responses within astrocyte processes and end-feet calculated from the activity during a train of whisker pad stimulations (Figure 2a). The type of astrocyte structure was already defined in the section selection process based on morphology (Figure 2b). The separation of pixels by the POI method created two
and decay time (astrocyte processes 165.5 ± 6 ss, s.d. and then evaluated for amplitude and timing (Figure 2e). The neuropil and astrocyte Ca2+ responses were clearly detectable in astrocyte structures. The difference can be explained by the difference in the concentration and kinetics of the two indicators (Chen et al., 2013). GCaMP6f was not expressed equally in all astrocyte end-feet; yet, fast Ca2+ increases occurred prior to dilatation of 49% of penetrating arterioles and 56% of capillaries (Figure 3j). We did not observe any difference in the size, timing, or occurrence of Ca2+ responses in end-feet on arterioles versus on capillaries.

The use of a GECI allowed us to study the very fast astrocyte processes, glialip, because these regions no longer contained a mixed signal from the astrocytes and neuronal dendrites. The Ca2+ responses measured in the glialip were smaller (Figure 3h and Table 1) than those measured with OGB. Most importantly, the timing of the responses was similar (Figure 3i and Table 1), and responses were clearly detectable in astrocyte structures. The difference can be explained by the difference in the concentration and kinetic properties of the two indicators (Chen et al., 2013). GCaMP6f was not expressed equally in all astrocyte end-feet; yet, fast Ca2+ increases occurred prior to dilatation of 49% of penetrating arterioles and 56% of capillaries (Figure 3j). We did not observe any difference in the size, timing, or occurrence of Ca2+ responses in end-feet on arterioles versus on capillaries.

As the Ca2+ and blood flow responses to the whisker pad stimulation were physiological and, thus, frequency dependent, we studied pharmacological actions over a range of different stimulation frequencies. During the 15 s stimulation period, >2 Hz stimulation resulted in an attenuation of the fast Ca2+ responses (Lind et al., 2013). However, 3 Hz stimulation triggered the maximal blood flow response. The difference in dependence on stimulation frequency is reflected in the responses to 1 versus 3 Hz. This was apparent when we investigated whether the fast Ca2+ responses in astrocyte processes and end-feet are equally affected by pharmacological intervention of neuronal excitation and inhibition. The level of neuronal activation was studied via extracellular measurements of the fEPSP, which was measured as the negative amplitude of the LFP in the extracellular space (Jessen et al., 2014) and reflected in the neuropil Ca2+ activity. The nonastrocytic pixels surrounding the astrocyte processes were excluded as neuropil in this study (Figure 4a,e, upper row). The nonastrocytic pixels from the astrocyte end-feet sections were excluded because they encompassed both neuropil and vessel lumen pixels, although the results did not differ significantly from those obtained for the neuropil around astrocyte processes.
To target the excitatory system, two glutamate receptor antagonists blocking NMDAR or the AMPA receptor (AMPA) were applied. MK801, which blocks NMDAR, did not reduce the fEPSP amplitudes (Figure 4c), but it did reduce the occurrence (Table 2) and the amplitude of the fast Ca^{2+} responses in the neuropil (Figure 4b, top). This effect was predictable due to the reduced influx of Ca^{2+} through NMDARs, but the effect on Ca^{2+} activity in astrocytes was unexpected. In the astrocyte processes, MK801 significantly reduced the amplitude (Figure 4b, middle) and responsiveness of POIs (Table 2). This influence of impaired NMDAR activation on Ca^{2+} responses in both neuropil and astrocyte processes associated the fast Ca^{2+} responses in astrocyte processes more closely with neuronal Ca^{2+} levels, which may be explained by the close association between astrocyte processes and the synapse.

In contrast, MK801 did not reduce the occurrence or magnitude of fast Ca^{2+} responses in the astrocyte end-feet (Figure 4b, bottom, and Table 2). Importantly, the stimulation-induced CBF responses were unaffected by MK801 (Figure 4d). This observation suggests that the stimulation-induced blood flow responses were independent of the fast Ca^{2+} responses in astrocyte processes and neuropil but covaried with the fast Ca^{2+} responses in astrocyte end-feet.

The AMPAR antagonist CNQX blocked synaptic transmission, as indicated by a marked reduction in the fEPSP amplitude for both 1 and
3 Hz stimulation ($n = 4$, $p < 1 \times 10^{-3}$, both 1 and 3 Hz, t-test; Figure 4c). CNQX also removed most of the fast Ca^{2+} signals in the neuropil (Table 2) and reduced the amplitude (Figure 4b, top). Similar effects were observed on fast Ca^{2+} responses in astrocytes, with reduced amplitudes in astrocyte processes (Figure 4b, middle) and in end-feet (Figure 4b, bottom). Finally, the general reduction in activation introduced by AMPAR blockade was reflected in the absence of a CBF response to stimulation ($n = 4$, $p < 0.05$, both 1 and 3 Hz, t-test; Figure 4c).
TABLE 2 Differences in the percentage of responding POIs before and after drug application

<table>
<thead>
<tr>
<th>Compound</th>
<th>Max amplitude</th>
<th>Responsivity</th>
<th>Max amplitude</th>
<th>Responsivity</th>
<th>Max amplitude</th>
<th>Responsivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 μM MK801</td>
<td>3.6% (p < 0.05)</td>
<td>13.6% (p < 0.05)</td>
<td>18.8% (p < 0.05)</td>
<td>53.2% (p < 0.05)</td>
<td>100% (p < 0.05)</td>
<td>50% (p < 0.05)</td>
</tr>
<tr>
<td>10 μM CNQX</td>
<td>2.4% (p < 0.05)</td>
<td>16.5% (p < 0.05)</td>
<td>18.4% (p < 0.05)</td>
<td>52.4% (p < 0.05)</td>
<td>100% (p < 0.05)</td>
<td>50% (p < 0.05)</td>
</tr>
<tr>
<td>1 μM THIP</td>
<td>3.8% (p < 0.05)</td>
<td>16.2% (p < 0.05)</td>
<td>18.2% (p < 0.05)</td>
<td>52.2% (p < 0.05)</td>
<td>100% (p < 0.05)</td>
<td>50% (p < 0.05)</td>
</tr>
<tr>
<td>100 μM THIP</td>
<td>12.5% (p < 0.05)</td>
<td>20% (p < 0.05)</td>
<td>16.2% (p < 0.05)</td>
<td>52.2% (p < 0.05)</td>
<td>100% (p < 0.05)</td>
<td>50% (p < 0.05)</td>
</tr>
</tbody>
</table>

Abbreviation: (N.S. = not significant)

Statistical analysis was carried out by three-way analysis of variance (ANOVA), followed by a paired t-test for significance at a specific stimulation frequency.

4 | DISCUSSION

Here, we showed that fast Ca$^{2+}$ responses can be detected in astrocyte processes using both chemical and genetically encoded Ca$^{2+}$ indicators in vivo during somatosensory stimulation. We also found that different pharmacological interventions affect stimulation-induced fast Ca$^{2+}$ responses in astrocyte end-feet and CBF responses to the same extent. Thus, we suggest that CBF responses may relate more to the fast Ca$^{2+}$ activity in astrocyte end-feet than to Ca$^{2+}$ responses in the neuropil and astrocyte processes. We described a novel method of investigating small astrocyte structures that is faster, less biased, and more optimal than when selecting ROIs based on visual evaluation.

This method involved the use of a pixel-based analysis to improve the evaluation of Ca$^{2+}$ activity within small cellular structures. The quality of the method was assessed and compared to the ROI method commonly used for Ca$^{2+}$ imaging. The ROI method is relevant in studies using a fluorescent indicator that loads all types of cells equally, and cell specificity is achieved by counterstaining with a fluorescent marker for a specific cell or structure. In addition, the technique can be helpful in studying small structures. The method uses pixels that are selected from the average of several images, which improves the signal-to-noise ratio and allows the study of Ca$^{2+}$ changes in small structures at the limit of spatial resolution. The more precise definition of astrocytic areas gives assessment of Ca$^{2+}$ responses in astrocyte processes and end-feet with higher sensitivity.

Astrocytes are known to compartmentalize; they have Ca$^{2+}$ responses in microdomains (Asada et al., 2015; Bernardinelli et al., 2011), and isolated responses have been detected in both astrocyte processes (Di Castro et al., 2011; Panatier et al., 2011; Shigetomi et al., 2013) and end-feet (Girouard et al., 2010; Gordon et al., 2008; Petzold 2013). Thus, both fast Ca$^{2+}$ activity in astrocytes and CBF responses depended on intact synaptic input to the cortex.

Next, the inhibitory system of the whisker barrel cortex was targeted with THIP, which tonically activates extrasynaptic GABA$_A$R. The effect of THIP on CBF and EPSP was presented and discussed in our earlier work (Jessen et al., 2014). From that previous study, we knew that a 1 μM dose of THIP primarily affects inhibitory interneurons, leading to general disinhibition that is reflected in larger fEPSPs and CBF responses to 1 Hz whisker pad stimulation (raw data example in Figure 4e). In contrast, a higher dose of THIP (100 μM) suppresses excitatory neurons, resulting in diminution of fEPSP formation and CBF responses, especially at stimulation frequencies of 3 Hz. In this study, THIP at 1 μM increased the amplitude of the Ca$^{2+}$ responses in astrocyte end-feet during 1 Hz stimulation (Figure 4f, bottom), but not significantly in the neuropil (Figure 4f, top) or astrocyte processes (Figure 4f, middle). The higher dose of 100 μM THIP significantly reduced the amplitude of the fast Ca$^{2+}$ responses in the neuropil and astrocyte end-feet (Figure 4f), just as CBF and fEPSP responses were suppressed (Jessen et al., 2014). Thus, when the fast Ca$^{2+}$ changes were studied in the presence of THIP, we observed a coupling between CBF responses and Ca$^{2+}$ activity in the astrocyte end-feet.
et al., 2008). We observed that the fast Ca2+ responses in astrocyte processes and end-feet differed with regard to their dependence on NMDARs and GABA\textsubscript{A}Rs. Moreover, Ca2+ activity in end-feet was more closely connected to changes in CBF than the activity in astrocyte processes. The difference in Ca2+ signaling in the two astrocyte compartments may be explained by the difference in associated structures. The structures defined as astrocyte end-feet were identified by their close connection to blood vessels, whereas astrocyte structures unrelated to blood vessels or close to the astrocyte soma were classified as processes. The astrocyte processes investigated here were among the largest branches, which successively split into numerous ultra-thin structures (Tong, Shigetomi, Looger, & Khakh, 2013). When OGB is used as the Ca2+ indicator, the very thin structures are inseparable from the neuropil, which consist of neuronal dendrites and processes. The Ca2+ signal from the neuropil is thought to primarily reflect the activity in neuronal dendrites (Dominbeck, Khabbaz, Collman, Adelman, & Tank, 2007; Kerr & Denk, 2008; Lind et al., 2013). This notion is supported by our observation that the fast Ca2+ responses measured using the genetically encoded GCaMP6f in gliapil were small or non-existent. The very small responses could also be due to a lower concentration of the genetically encoded Ca2+ indicator in these structures, as indicated by the low level of baseline fluorescence in the fine branches compared to larger branches of the astrocyte processes (Supporting Information Fig. S4). A sufficient level of Ca2+ indicator in a cell is essential for signal detection and responses may not be observed at low Ca2+ concentrations. Low levels of indicator due to suboptimal uptake and/or expression of the genetically encoded indicator in a proportion of astrocytes may also be the reason why fast Ca2+ responses were detected in only half of the astrocyte end-feet prior to vessel dilation. In contrast, a well-loaded chemical indicator enters all structures, giving more reliable expression levels and fluorescent responses. This can be an advantage when the effect of a drug is assessed as in Figure 4.

We observed that the Ca2+ responses from the neuropil and large astrocyte processes were similarly affected by the pharmacological interventions, reflecting a dependence of astrocytic Ca2+ levels on neuronal Ca2+ activity. A previous study of astrocytes described how neuronal activation triggers Ca2+ responses in gliapil, which then propagate to the larger cell structures (Kanemaru et al., 2014). NMDAR activation is a major source of neuronal Ca2+ elevation (Chalfoux & Carter, 2011; Sabatini, Oertner, & Svoboda, 2002), which explains the attenuating effect of MK801 on the fast Ca2+ responses in the neuropil. Similar attenuation was observed in astrocyte processes, possibly indicating that Ca2+ activity in astrocyte processes reflects activity in the synapses that they surround, and potentially post-synaptic Ca2+ (Di Castro et al., 2011; Panatier et al., 2011). The effects of the glutamate receptor antagonist and GABA\textsubscript{A}R agonist on the fast astrocytic Ca2+ response are likely to be explained by an indirect effect via the suppression of neuronal activity. The effect of CNQX reflects postsynaptic blockade in layer II/III neurons, in addition to silencing of the synaptic input from layer IV. Thus, the effect of the AMPAR antagonist on fEPSP, Ca2+, and CBF responses was predictable, as CNQX blocks all activities upstream from a synaptic input.

Though the cellular mechanism leading to fast Ca2+ responses in astrocytes is not completely understood, some studies have reported a loss of the slow evoked Ca2+ signals in astrocyte IP\textsubscript{3}R knockout (KO) animals (Di Castro et al., 2011; Kanemaru et al., 2014; Nizar et al., 2013). These mice had intact neurovascular coupling despite the astrocytes lacking IP\textsubscript{3}R (Bonder & McCarthy, 2014; Nizar et al., 2013) and dilation of blood vessels without obvious changes in Ca2+ levels (Institoris, Rosenegger, & Gordon, 2015). Interestingly, a more recent study showed intact Ca2+ responses in astrocyte processes in IP\textsubscript{3}R KO animals (Rungta et al., 2016; Srinivasan et al., 2015). In addition, other studies maintain that Ca2+ in astrocyte processes and end-feet plays a role in CBF regulation (Bieseker & Snienc, 2015; Dunn et al., 2013; Otsu et al., 2015), which our results tend to support. These conflicting results may have been conciliated by two recent studies showing how astrocytic Ca2+ changes are essential for the dilation of capillaries, but not arterioles (Bieseker et al., 2016; Mishra et al., 2016). Thus, when a fast Ca2+ change was observed in the current study in end-feet surrounding both capillaries and arterioles, only those in the capillaries can be expected to have an effect on vessel diameter. The effects of the different pharmacological modifications on astrocytic Ca2+ support a regulatory role on CBF. Although MK801 reduced the fast Ca2+ responses in the neuropil and astrocyte processes in the current study, fast Ca2+ responses were preserved in the astrocyte end-feet. Similarly, the sizes of the fEPSP and CBF responses were unchanged. The same dose of MK801 was previously shown to reduce CBF responses to stimulation of the whisker barrel cortex in rats (Nielsen & Lauritzen, 2001), but much higher doses are required to reduce the CBF in mice (Toussay, Basu, Lacoste, & Hamel, 2013). Low dose of the extrasynaptic GABA\textsubscript{A}R agonist increased fEPSPs and augmented CBF responses during low-frequency stimulation because of an inhibition of inhibitory interneurons (Jessen et al., 2014). The result is disinhibition, which was also observed in this study with the significantly increased fast Ca2+ responses in astrocyte end-feet during low stimulation frequencies. This effect suggests the participation of interneurons in the regulation of end-feet activity, as inhibitory interneurons terminate on astrocytes close to the vessels (Hamel, 2006) and contribute to astrocytic Ca2+ responses (Doengi, Deitmer, & Lohr, 2008; Simard, Arcuino, Takano, Liu, & Nedergaard, 2003). A complete blood flow response has been found to depend on the activity of both inhibitory interneurons and astrocytes (Lecrux et al., 2011). In slices, vasointestinal peptide and somatostatin released from interneurons stimulate Ca2+ responses in astrocyte end-feet prior to vasodilation (Straub, Bonev, Wilkerson, & Nelson, 2006). These results support the hypothesis that astrocyte end-feet function as a separate entity (Nuriya & Yasui, 2013) and could explain why the fast Ca2+ responses in the current study were less sensitive to MK801 but more susceptible to activation of the extrasynaptic GABA\textsubscript{A}Rs. High dose THIP (100 \textmu M) reduced CBF and fEPSP responses (Jessen et al., 2014) in accordance with a reduced fast Ca2+ response in astrocyte end-feet. A similar dose of THIP depolarizes astrocytes in hippocampal slices, blocking the two-pore domain K+ channels (Ma, Xie, & Zhou, 2012) and the release of vasodilator K+.

In summary, fast Ca2+ responses in astrocyte end-feet correlated with CBF responses to the stimulation of the whisker barrel cortex.
These results do not clarify the mechanism, but our modifications of the system led us to establish that the fast Ca$^{2+}$ responses occur in astrocyte end-feet and contribute to neurovascular coupling.

ACKNOWLEDGMENT

This study was supported by the Lundbeck Foundation, the NOVO-Nordisk Foundation, the Danish Medical Research Council, the NORDEA Foundation for the Center for Healthy Aging, and Foundation Leducq. None of the authors have any conflicts of interest to declare.

ORCID

Barbara Lykke Lind (http://orcid.org/0000-0003-0027-5226)

REFERENCES

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the supporting information tab for this article.

How to cite this article: Lind BL, Jessen SB, Lenstrup M, Joséphine C, Bonvento G, Lauritzen M. Fast Ca(2+) responses in astrocyte end-feet and neurovascular coupling in mice. *Glia*. 2017:00:1–11. https://doi.org/10.1002/glia.23246