D. L. Rothman, H. M. De-feyter, R. A. De-graaf, G. F. Mason, and K. L. Behar, 13C MRS studies of neuroenergetics and neurotransmitter cycling in humans, vol.24, pp.943-957, 2011.

T. B. Rodrigues, J. Valette, and A. K. , Bouzier-Sore, (13)C NMR spectroscopy applications to brain energy metabolism, Front. Neuroenergetics, vol.5, p.9, 2013.
DOI : 10.3389/fnene.2013.00009

URL : https://www.frontiersin.org/articles/10.3389/fnene.2013.00009/pdf

E. L. Thomas, J. D. Hanrahan, M. Ala-korpela, G. Jenkinson, D. Azzopardi et al., Noninvasive characterization of neonatal adipose tissue by 13C magnetic resonance spectroscopy, Lipids, vol.32, issue.6, pp.645-651, 1997.

J. H. Hwang, S. Bluml, A. Leaf, and B. D. Ross, In vivo characterization of fatty acids in human adipose tissue using natural abundance 1H decoupled 13C MRS at 1.5 T: clinical applications to dietary therapy, NMR Biomed, vol.16, issue.3, pp.160-167, 2003.

R. Gruetter, T. A. Prolla, and R. G. Shulman, 13C NMR visibility of rabbit muscle glycogen in vivo, Magn. Reson. Med, vol.20, issue.2, pp.327-332, 1991.

R. Taylor, T. B. Price, D. L. Rothman, R. G. Shulman, and G. I. Shulman, Validation of 13C NMR measurement of human skeletal muscle glycogen by direct biochemical assay of needle biopsy samples, Magn. Reson. Med, vol.27, issue.1, pp.13-20, 1992.

R. Gruetter, I. Magnusson, D. L. Rothman, M. J. Avison, R. G. Shulman et al., Validation of 13C NMR measurements of liver glycogen in vivo, Magn. Reson. Med, vol.31, issue.6, pp.583-588, 1994.

T. B. Price, Regulation of glycogen metabolism in muscle during exercise, Metabolomics by in Vivo NMR, 2004.

G. F. Mason, K. F. Petersen, R. A. De-graaf, T. Kanamatsu, T. Otsuki et al., A comparison of C-13 NMR measurements of the rates of glutamine synthesis and the tricarboxylic acid cycle during oral and intravenous administration of, Brain Res. Protoc, vol.10, issue.2, pp.143-143, 2003.

B. Ross, A. Lin, K. Harris, P. Bhattacharya, and B. Schweinsburg, Clinical experience with 13C MRS in vivo, NMR Biomed, vol.16, issue.6e7, pp.358-369, 2003.

F. Boumezbeur, K. F. Petersen, G. W. Cline, G. F. Mason, K. L. Behar et al., The contribution of blood lactate to brain energy metabolism in humans measured by dynamic C-13 nuclear magnetic resonance spectroscopy, J. Neurosci, vol.30, issue.42, pp.13983-13991, 2010.

S. M. Cohen, R. G. Shulman, and A. C. Mclaughlin, Effects of ethanol on alanine metabolism in perfused mouse liver studied by 13C NMR, Proc. Natl. Acad. Sci. U. S. A, vol.76, issue.10, pp.4808-4812, 1979.

C. Pahl-wostl and J. Seelig, Metabolic pathways for ketone body production. 13C NMR spectroscopy of rat liver in vivo using 13C-multilabeled fatty acids, Biochemistry, vol.25, issue.22, pp.6799-6807, 1986.

E. S. Jin, A. D. Sherry, and C. R. Malloy, Metabolism of glycerol, glucose, and lactate in the citric acid cycle prior to incorporation into hepatic acylglycerols, J. Biol. Chem, vol.288, issue.20, pp.14488-14496, 2013.

I. A. Bailey, D. G. Gadian, P. M. Matthews, G. K. Radda, and P. J. Seeley, Studies of metabolism in the isolated, perfused rat-heart using C-13 Nmr, FEBS Lett, vol.123, issue.2, pp.315-318, 1981.

A. D. Sherry, R. L. Nunnally, and R. M. Peshock, Metabolic studies of pyruvate-and lactate-perfused guinea pig hearts by 13C NMR. Determination of substrate preference by glutamate isotopomer distribution, J. Biol. Chem, vol.260, issue.16, pp.9272-9279, 1985.

A. D. Sherry, C. R. Malloy, R. E. Roby, A. Rajagopal, and F. M. Jeffrey, Propionate metabolism in the rat heart by 13C n.m.r. spectroscopy, vol.254, pp.593-598, 1988.

E. S. Jin, A. D. Sherry, and C. R. Malloy, Lactate contributes to glyceroneogenesis and glyconeogenesis in skeletal muscle by reversal of pyruvate kinase, J. Biol. Chem, vol.290, issue.51, pp.30486-30497, 2015.

S. Cerdan, B. Kunnecke, and J. Seelig, Cerebral metabolism of [1,2-13C2]acetate as detected by in vivo and in vitro 13C NMR, J. Biol. Chem, vol.265, issue.22, pp.12916-12926, 1990.

V. Lebon, K. F. Petersen, G. W. Cline, J. Shen, G. F. Mason et al., Astroglial contribution to brain energy metabolism in humans revealed by 13C nuclear magnetic resonance spectroscopy: elucidation of the dominant pathway for neurotransmitter glutamate repletion and measurement of astrocytic oxidative metabolism, J. Neurosci, vol.22, issue.5, pp.1523-1531, 2002.

F. Boumezbeur, G. F. Mason, R. A. De-graaf, K. L. Behar, G. W. Cline et al., Altered brain mitochondrial metabolism in healthy aging as assessed by in vivo magnetic resonance spectroscopy, J. Cereb. Blood Flow Metab, vol.30, issue.1, pp.211-221, 2010.

B. Kunnecke, S. Cerdan, and J. Seelig, Cerebral metabolism of [1,2-13C2]glucose and [U-13C4]3-hydroxybutyrate in rat brain as detected by 13C NMR spectroscopy, NMR Biomed, vol.6, issue.4, pp.264-277, 1993.

S. V. Gonzalez, N. H. Nguyen, F. Rise, and B. Hassel, Brain metabolism of exogenous pyruvate, J. Neurochem, vol.95, issue.1, pp.284-293, 2005.

A. K. Bouzier, E. Thiaudiere, M. Biran, R. Rouland, P. Canioni et al., The metabolism of [3-C-13]lactate in the rat brain is specific of a pyruvate carboxylase-deprived compartment, J. Neurochem, vol.75, issue.2, pp.480-486, 2000.

J. M. Duarte, F. M. Girault, and R. Gruetter, Brain energy metabolism measured by C-13 magnetic resonance spectroscopy in vivo upon infusion of [3-C-13] lactate, J. Neurosci. Res, vol.93, issue.7, pp.1009-1018, 2015.

P. Bagga, K. L. Behar, G. F. Mason, H. M. De-feyter, D. L. Rothman et al., Characterization of cerebral glutamine uptake from blood in the mouse brain: implications for metabolic modeling of 13C NMR data, J. Cereb. Blood Flow Metab, vol.34, issue.10, pp.1666-1672, 2014.

J. R. Alger, L. O. Sillerud, K. L. Behar, R. J. Gillies, R. G. Shulman et al., In vivo carbon-13 nuclear magnetic resonance studies of mammals, Science, vol.214, issue.4521, pp.660-662, 1981.

K. F. Petersen, D. Laurent, D. L. Rothman, G. W. Cline, and G. I. Shulman, Mechanism by which glucose and insulin inhibit net hepatic glycogenolysis in humans, J. Clin. InvestInvestig, vol.101, issue.6, pp.1203-1209, 1998.

I. Y. Choi, I. Tkac, K. Ugurbil, and R. Gruetter, Noninvasive measurements of [1-(13)C]glycogen concentrations and metabolism in rat brain in vivo, J. Neurochem, vol.73, issue.3, pp.1300-1308, 1999.

G. Oz, E. R. Seaquist, A. Kumar, A. B. Criego, L. E. Benedict et al., Human brain glycogen content and metabolism: implications on its role in brain energy metabolism, Am. J. Physiol. Endocrinol. Metab, vol.292, issue.3, pp.946-951, 2007.

F. D. Morgenthaler, R. B. Van-heeswijk, L. J. Xin, S. Laus, H. Frenkel et al., Non-invasive quantification of brain glycogen absolute concentration, J. Neurochem, vol.107, issue.5, pp.1414-1423, 2008.

F. D. Morgenthaler, B. R. Lanz, J. M. Petit, H. Frenkel, P. J. Magistretti et al., Alteration of brain glycogen turnover in the conscious rat after 5h of prolonged wakefulness, Neurochem. Int, vol.55, issue.1e3, pp.45-51, 2009.

R. B. Van-heeswijk, F. D. Morgenthaler, L. J. Xin, and R. Gruetter, Quantification of brain glycogen concentration and turnover through localized C-13 NMR of both the C1 and C6 resonances, NMR Biomed, vol.23, issue.3, pp.270-276, 2010.

N. Tesfaye, E. R. Seaquist, and G. Oz, Noninvasive measurement of brain glycogen by nuclear magnetic resonance spectroscopy and its application to the study of brain metabolism, J. Neurosci. Res, vol.89, issue.12, pp.1905-1912, 2011.

A. Khowaja, I. Y. Choi, E. R. Seaquist, and G. Oz, In vivo Magnetic Resonance Spectroscopy of cerebral glycogen metabolism in animals and humans, Metab. Brain Dis, vol.30, issue.1, pp.255-261, 2015.

E. M. Chance, S. H. Seeholzer, K. Kobayashi, and J. R. Williamson, Mathematical analysis of isotope labeling in the citric acid cycle with applications to 13C NMR studies in perfused rat hearts, J. Biol. Chem, vol.258, issue.22, pp.13785-13794, 1983.

G. F. Mason, D. L. Rothman, K. L. Behar, and R. G. Shulman, NMR determination of the TCA cycle rate and alpha-ketoglutarate/glutamate exchange rate in rat brain, J. Cereb. Blood Flow Metab, vol.12, issue.3, pp.434-447, 1992.

A. Ziegler, C. E. Zaugg, P. T. Buser, J. Seelig, and B. Kunnecke, Non-invasive measurements of myocardial carbon metabolism using in vivo 13C NMR spectroscopy, NMR Biomed, vol.15, issue.3, pp.222-234, 2002.

D. E. Befroy, R. J. Perry, N. Jain, S. Dufour, G. W. Cline et al., Direct assessment of hepatic mitochondrial oxidative and anaplerotic fluxes in humans using dynamic 13C magnetic resonance spectroscopy, Nat. Med, vol.20, issue.1, pp.98-102, 2014.

S. Li, L. An, S. Yu, M. Araneta, C. S. Johnson et al., C MRS of human brain at 7 Tesla using [2-(13) C]glucose infusion and low power broadband stochastic proton decoupling, Magn. Reson. Med, vol.75, issue.13, pp.954-961, 2016.

A. A. Shestov, J. Valette, D. K. Deelchand, K. Ugurbil, and P. G. Henry, Metabolic modeling of dynamic brain (1)(3)C NMR multiplet data: concepts and simulations with a two-compartment neuronal-glial model, Neurochem. Res, vol.37, issue.11, pp.2388-2401, 2012.

R. A. Waniewski and D. L. Martin, Preferential utilization of acetate by astrocytes is attributable to transport, J. Neurosci, vol.18, issue.14, pp.5225-5233, 1998.

D. K. Deelchand, C. Nelson, A. A. Shestov, K. Ugurbil, and P. G. Henry, Simultaneous measurement of neuronal and glial metabolism in rat brain in vivo using coinfusion of, J. Magn. Reson, vol.196, issue.2, pp.157-163, 2009.

N. R. Sibson, G. F. Mason, J. Shen, G. W. Cline, A. Z. Herskovits et al., In vivo C-13 NMR measurement of neurotransmitter glutamate cycling, anaplerosis and TCA cycle flux in rat brain during [2-C-13]glucose infusion, J. Neurochem, vol.76, issue.4, pp.975-989, 2001.

G. F. Mason, K. F. Petersen, R. A. De-graaf, G. I. Shulman, and D. L. Rothman, Measurements of the anaplerotic rate in the human cerebral cortex using 13C magnetic resonance spectroscopy and, J. Neurochem, vol.100, issue.1, pp.73-86, 2007.

O. A. Petroff, L. D. Errante, D. L. Rothman, J. H. Kim, and D. D. Spencer, Glutamateglutamine cycling in the epileptic human hippocampus, Epilepsia, vol.43, issue.7, pp.703-710, 2002.

I. Y. Choi, H. Lei, and R. Gruetter, Effect of deep pentobarbital anesthesia on neurotransmitter metabolism in vivo: on the correlation of total glucose consumption with glutamatergic action, J. Cereb. Blood Flow Metab, vol.22, issue.11, pp.1343-1351, 2002.

N. R. Sibson, A. Dhankhar, G. F. Mason, D. L. Rothman, K. L. Behar et al., Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity, Proc. Natl. Acad. Sci. U. S. A, vol.95, issue.1, pp.316-321, 1998.
DOI : 10.1073/pnas.95.1.316

URL : http://www.pnas.org/content/95/1/316.full.pdf

A. B. Patel, R. A. De-graaf, G. F. Mason, T. Kanamatsu, D. L. Rothman et al., Glutamatergic neurotransmission and neuronal glucose oxidation are coupled during intense neuronal activation, J. Cereb. Blood Flow Metab, vol.24, issue.9, pp.972-985, 2004.
DOI : 10.1097/01.wcb.0000126234.16188.71

J. Yang, C. Q. Li, and J. Shen, In vivo detection of cortical GABA turnover from intravenously infused, Magn. Reson. Med, vol.53, issue.6, pp.1258-1267, 2005.

J. Shen, D. L. Rothman, K. L. Behar, and S. Xu, Determination of the glutamateglutamine cycling flux using two-compartment dynamic metabolic modeling is sensitive to astroglial dilution, J. Cereb. Blood Flow Metab, vol.29, issue.1, pp.108-118, 2009.

N. Auestad, R. A. Korsak, J. W. Morrow, and J. Edmond, Fatty acid oxidation and ketogenesis by astrocytes in primary culture, J. Neurochem, vol.56, issue.4, pp.1376-1386, 1991.

D. Ebert, R. G. Haller, and M. E. Walton, Energy contribution of octanoate to intact rat brain metabolism measured by 13C nuclear magnetic resonance spectroscopy, J. Neurosci, vol.23, issue.13, pp.5928-5935, 2003.

B. Lanz, L. Xin, P. Millet, and R. Gruetter, In vivo quantification of neuro-glial metabolism and glial glutamate concentration using 1H-[13C] MRS at 14.1T, J. Neurochem, vol.128, issue.1, pp.125-139, 2014.

A. B. Patel, R. A. De-graaf, G. F. Mason, D. L. Rothman, R. G. Shulman et al., The contribution of GABA to glutamate/glutamine cycling and energy metabolism in the rat cortex in vivo, Proc. Natl. Acad. Sci. U. S. A, vol.102, issue.15, pp.5588-5593, 2005.

A. B. Patel, R. A. De-graaf, D. L. Rothman, and K. L. Behar, Effects of gammaAminobutyric acid transporter 1 inhibition by tiagabine on brain glutamate and gamma-Aminobutyric acid metabolism in the anesthetized rat in vivo, J. Neurosci. Res, vol.93, issue.7, pp.1101-1108, 2015.

J. Yang, S. Z. Li, J. Bacher, and J. Shen, Quantification of cortical GABA-glutamine cycling rate using in vivo magnetic resonance signal of [2-C-13]GABA derived from glia-specific substrate [2-C-13]acetate, Neurochem. Int, vol.50, issue.2, pp.371-378, 2007.

F. Boumezbeur, K. F. Petersen, G. I. Shulman, D. L. Rothman, and G. F. Mason, Measurement of the GABA/Glutamine cycling rate in the human brain using 13C MRS, Proc. Int. Soc. Mag. Reson Med, p.15, 2007.

P. Van-eijsden, K. L. Behar, G. F. Mason, K. P. Braun, and R. A. De-graaf, In vivo neurochemical profiling of rat brain by 1H-[13C] NMR spectroscopy: cerebral energetics and glutamatergic/GABAergic neurotransmission, J. Neurochem, vol.112, issue.1, pp.24-33, 2010.

R. Gruetter, G. Adriany, I. Y. Choi, P. G. Henry, H. Lei et al., Localized in vivo 13C NMR spectroscopy of the brain, NMR Biomed, vol.16, issue.6e7, pp.313-338, 2003.

D. I. Hoult and R. E. Richards, The signal-to-noise ratio of nuclear magnetic resonance experiment, J. Magn. Reson, vol.24, pp.71-85, 1976.

A. J. Van-den, H. J. Bergh, . Van-den, A. Boogert, and . Heerschap, Skin temperature increase during local exposure to high-power RF levels in humans, Magn. Reson. Med, vol.43, issue.3, pp.488-490, 2000.

A. J. Van-den, H. J. Bergh, . Van-den, A. Boogert, and . Heerschap, Calibration of the 1H decoupling field strength and experimental evaluation of the specific RF absorption rate in 1H-decoupled human 13C-MRS, Magn. Reson. Med, vol.39, issue.4, pp.642-646, 1998.

I. Y. Choi, I. Tkac, and R. Gruetter, Single-shot, three-dimensional "non-echo" localization method for in vivo NMR spectroscopy, Magn. Reson. Med, vol.44, issue.3, pp.387-394, 2000.

T. B. Price, D. L. Rothman, and R. G. Shulman, NMR of glycogen in exercise, Proc. Nutr. Soc, vol.58, issue.4, pp.851-859, 1999.

V. Lebon, S. Dufour, K. F. Petersen, J. Ren, B. M. Jucker et al., Effect of triiodothyronine on mitochondrial energy coupling in human skeletal muscle, J. Clin. Invest, vol.108, issue.5, pp.733-737, 2001.

J. J. Prompers, J. A. Jeneson, M. R. Drost, C. C. Oomens, G. J. Strijkers et al., Dynamic MRS and MRI of skeletal muscle function and biomechanics, NMR Biomed, vol.19, issue.7, pp.927-953, 2006.

D. E. Befroy, K. Falk-petersen, D. L. Rothman, and G. I. Shulman, Assessment of in vivo mitochondrial metabolism by magnetic resonance spectroscopy, Methods Enzym, vol.457, pp.373-393, 2009.

I. Y. Choi and R. Gruetter, In vivo 13C NMR assessment of brain glycogen concentration and turnover in the awake rat, Neurochem. Int, vol.43, issue.4e5, pp.317-322, 2003.

I. Y. Choi, E. R. Seaquist, and R. Gruetter, Effect of hypoglycemia on brain glycogen metabolism in vivo, J. Neurosci. Res, vol.72, issue.1, pp.25-32, 2003.

G. Oz, P. G. Henry, E. R. Seaquist, and R. Gruetter, Direct, noninvasive measurement of brain glycogen metabolism in humans, Neurochem. Int, vol.43, issue.4e5, pp.323-329, 2003.

W. A. Anderson and R. Freeman, Influence of a second radiofrequency field on high-resolution nuclear magnetic resonance spectra, J. Chem. Phys, vol.37, issue.1, p.85, 1962.

A. J. Shaka, J. Keeler, and R. Freeman, Evaluation of a new broad-band decoupling sequence e Waltz-16, J. Magn. Reson, vol.53, issue.2, pp.313-340, 1983.

A. J. Shaka and J. Keeler, Broadband spin decoupling in isotropic liquids, Prog. Nucl. Mag. Res. Sp, vol.19, pp.47-129, 1987.

M. H. Levitt and R. Freeman, Composite pulse decoupling, J. Magn. Reson, vol.43, issue.3, pp.502-507, 1981.
DOI : 10.1016/0022-2364(81)90066-4

M. H. Levitt, Symmetrical composite pulse sequences for Nmr populationinversion .1. Compensation of radiofrequency field inhomogeneity, J. Magn. Reson, vol.48, issue.2, pp.234-264, 1982.

M. H. Levitt, Symmetrical composite pulse sequences for Nmr populationinversion .2. Compensation of resonance offset, J. Magn. Reson, vol.50, issue.1, pp.95-110, 1982.

R. A. De-graaf, Theoretical and experimental evaluation of broadband decoupling techniques for in vivo nuclear magnetic resonance spectroscopy, Magn. Reson. Med, vol.53, issue.6, pp.1297-1306, 2005.

S. Z. Li, J. Yang, and J. Shen, Novel strategy for cerebral C-13 MRS using very low RF power for proton decoupling, Magn. Reson. Med, vol.57, issue.2, pp.265-271, 2007.

Y. Xiang and J. Shen, Windowed stochastic proton decoupling for in vivo C-13 magnetic resonance spectroscopy with reduced RF power deposition, J. Magn. Reson Imaging, vol.34, issue.4, pp.968-972, 2011.

R. Gruetter, G. Adriany, H. Merkle, and P. M. Andersen, Broadband decoupled, H-1-localized C-13 MRS of the human brain at 4 Tesla, Magn. Reson. Med, vol.36, issue.5, pp.659-664, 1996.

J. Shen, K. F. Petersen, K. L. Behar, P. Brown, T. W. Nixon et al., Determination of the rate of the glutamate/glutamine cycle in the human brain by in vivo 13C NMR, Proc. Natl. Acad. Sci. U. S. A, vol.96, issue.14, pp.8235-8240, 1999.

W. P. Aue, S. Muller, and J. Seelig, Localized C-13 Nmr-spectra with enhanced sensitivity obtained by volume-selective excitation, J. Magn. Reson, vol.61, issue.2, pp.392-395, 1985.
DOI : 10.1016/0022-2364(85)90097-6

P. G. Henry, I. Tkac, and R. Gruetter, 1H-localized broadband 13C NMR spectroscopy of the rat brain in vivo at 9.4 T, vol.50, pp.684-692, 2003.

D. P. Burum and R. R. Ernst, Net polarization transfer via a J-ordered state for signal enhancement of low-sensitivity nuclei, J. Magn. Reson, vol.39, issue.1, pp.163-168, 1980.

D. M. Doddrell, D. T. Pegg, and M. R. Bendall, Distortionless enhancement of Nmr signals by polarization transfer, J. Magn. Reson, vol.48, issue.2, pp.323-327, 1982.

R. A. De-graaf, Vivo NMR Spectroscopy e 2nd Edition: Principles and Techniques, p.592, 2007.

S. R. Hartmann and E. L. Hahn, Nuclear double resonance in the rotating frame, Phys. Rev, vol.128, pp.2042-2053, 1962.

R. A. De-graaf, D. L. Rothman, and K. L. Behar, State of the art direct 13C and indirect 1H-[13C] NMR spectroscopy in vivo. A practical guide, NMR Biomed, vol.24, issue.8, pp.958-972, 2011.

W. Chen, G. Adriany, X. H. Zhu, R. Gruetter, and K. Ugurbil, Detecting natural abundance carbon signal of NAA metabolite within 12-cm(3) localized volume of human brain using H-1-{C-13} NMR spectroscopy, Magn. Reson. Med, vol.40, issue.2, pp.180-184, 1998.

D. L. Rothman, K. L. Behar, H. P. Hetherington, J. A. Hollander, M. R. Bendall et al., 1H-Observe/13C-decouple spectroscopic measurements of lactate and glutamate in the rat brain in vivo, Proc. Natl. Acad. Sci. U. S. A, vol.82, issue.6, pp.1633-1637, 1985.

F. Boumezbeur, L. Besret, J. Valette, F. Vaufrey, P. G. Henry et al., NMR measurement of brain oxidative metabolism in monkeys using 13C-labeled glucose without a 13C radiofrequency channel, vol.52, pp.33-40, 2004.

F. Boumezbeur, L. Besret, J. Valette, M. C. Gregoire, T. Delzescaux et al., Glycolysis versus TCA cycle in the primate brain as measured by combining 18F-FDG PET and 13C-NMR, J. Cereb. Blood Flow Metab, vol.25, issue.11, pp.1418-1423, 2005.

M. M. Chaumeil, J. Valette, M. Guillermier, E. Brouillet, F. Boumezbeur et al., Multimodal neuroimaging provides a highly consistent picture of energy metabolism, validating 31P MRS for measuring brain ATP synthesis, Proc. Natl. Acad. Sci. U. S. A, vol.106, issue.10, pp.3988-3993, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02155689

J. Valette, M. Chaumeil, M. Guillermier, G. Bloch, P. Hantraye et al., Diffusion-weighted NMR spectroscopy allows probing of 13C labeling of glutamate inside distinct metabolic compartments in the brain, Magn. Reson. Med, vol.60, issue.2, pp.306-311, 2008.

C. N. Chen and D. I. Hoult, Biomedical magnetic resonance technology Bristol: Adam Hilger, 1989.

G. Adriany and R. Gruetter, A half-volume coil for efficient proton decoupling in humans at 4 Tesla, J. Magn. Reson, vol.125, issue.1, pp.178-184, 1997.

P. A. Bottomley, C. J. Hardy, P. B. Roemer, and O. M. Mueller, Proton-decoupled, overhauser-enhanced, spatially localized C-13 spectroscopy in humans, Magn. Reson. Med, vol.12, issue.3, pp.348-363, 1989.
DOI : 10.1002/mrm.1910120307

A. Kumar and P. A. Bottomley, Optimized quadrature surface coil designs, Magn. Reson Mater. Phys, vol.21, issue.1e2, pp.41-52, 2008.
DOI : 10.1007/s10334-007-0090-2

URL : http://europepmc.org/articles/pmc2588669?pdf=render

E. S. Roig, A. W. Magill, G. Donati, M. Meyerspeer, L. Xin et al., A double-quadrature radiofrequency coil design for proton-decoupled carbon-13 magnetic resonance spectroscopy in humans at 7T, Magn. Reson. Med, vol.73, issue.2, pp.894-900, 2015.

M. Meyerspeer, E. S. Roig, R. Gruetter, and A. W. Magill, An improved trap design for decoupling multinuclear RF coils, Magn. Reson. Med, vol.72, issue.2, pp.584-590, 2014.

M. Alecci, S. Romanzetti, J. Kaffanke, A. Celik, H. P. Wegener et al., Practical design of a 4 Tesla double-tuned RF surface coil for interleaved H-1 and Na-23 MRI of rat brain, J. Magn. Reson, vol.181, issue.2, pp.203-211, 2006.

A. Dabirzadeh and M. P. Mcdougall, Trap design for insertable second-nuclei radiofrequency coils for magnetic resonance imaging and spectroscopy, Concept Magn. Reson B, vol.35, issue.3, pp.121-132, 2009.

L. Darrasse and J. C. Ginefri, Perspectives with cryogenic RF probes in biomedical MRI, Biochimie, vol.85, issue.9, pp.915-937, 2003.

M. Sack, F. Wetterling, A. Sartorius, G. Ende, and W. Weber-fahr, Signal-to-noise ratio of a mouse brain 13C CryoProbe T system in comparison with room temperature coils: spectroscopic phantom and in vivo results, NMR Biomed, vol.27, issue.6, pp.709-715, 2014.

J. T. Vaughan, H. P. Hetherington, J. O. Otu, J. W. Pan, and G. M. Pohost, High-frequency volume coils for clinical Nmr imaging and spectroscopy, Magn. Reson. Med, vol.32, issue.2, pp.206-218, 1994.

J. T. Vaughan, G. Adriany, M. Garwood, E. Yacoub, T. Duong et al., Detunable transverse electromagnetic (TEM) volume coil for high-field NMR, Magn. Reson. Med, vol.47, issue.5, pp.990-1000, 2002.

R. Gruetter, C. Boesch, M. Muri, E. Martin, and K. Wuthrich, A simple design for a double-tunable probe head for imaging and spectroscopy at high fields, Magn. Reson. Med, vol.15, issue.1, pp.128-134, 1990.

S. Li, Y. Zhang, S. Wang, M. F. Araneta, C. S. Johnson et al., 13C MRS of occipital and frontal lobes at 3 T using a volume coil for stochastic proton decoupling, NMR Biomed, vol.23, issue.8, pp.977-985, 2010.

J. L. Pan, G. F. Mason, J. T. Vaughan, W. J. Chu, Y. T. Zhang et al., C-13 editing of glutamate in human brain using J-refocused coherence transfer spectroscopy at 4.1 T, Magn. Reson. Med, vol.37, issue.3, pp.355-358, 1997.

G. F. Mason, J. W. Pan, W. J. Chu, B. R. Newcomer, Y. T. Zhang et al., Measurement of the tricarboxylic acid cycle rate in human grey and white matter in vivo by H-1-[C-13] magnetic resonance spectroscopy at 4.1T, J. Cereb. Blood Flow Metab, vol.19, issue.11, pp.1179-1188, 1999.

B. Tiret, A. A. Shestov, J. Valette, and P. G. Henry, Metabolic modeling of dynamic (13)C NMR isotopomer data in the brain in vivo: fast screening of metabolic models using automated generation of differential equations, Neurochem. Res, vol.40, issue.12, pp.2482-2492, 2015.

M. M. Dehghani, B. Lanz, J. M. Duarte, N. Kunz, and R. Gruetter, Refined analysis of brain energy metabolism using in vivo dynamic enrichment of 13C multiplets, ASN Neuro, vol.8, issue.2, 2016.

S. W. Provencher, Estimation of metabolite concentrations from localized in vivo proton NMR spectra, Magn. Reson. Med, vol.30, issue.6, pp.672-679, 1993.

P. G. Henry, M. Marjanska, J. D. Walls, J. Valette, R. Gruetter et al., Proton-observed carbon-edited NMR spectroscopy in strongly coupled secondorder spin systems, Magn. Reson. Med, vol.55, issue.2, pp.250-257, 2006.

P. G. Henry, G. Oz, S. Provencher, and R. Gruetter, Toward dynamic isotopomer analysis in the rat brain in vivo: automatic quantitation of 13C NMR spectra using LCModel, NMR Biomed, vol.16, issue.6e7, pp.400-412, 2003.

D. K. Deelchand, K. Ugurbil, and P. G. Henry, Investigating brain metabolism at high fields using localized 13C NMR spectroscopy without 1H decoupling, Magn. Reson. Med, vol.55, issue.2, pp.279-286, 2006.

L. Vanhamme, S. Van-huffel, P. Van-hecke, and D. Van-ormondt, Time-domain quantification of series of biomedical magnetic resonance spectroscopy signals, J. Magn. Reson, vol.140, issue.1, pp.120-130, 1999.

B. Lanz, J. M. Duarte, N. Kunz, V. Mlynarik, R. Gruetter et al., Which prior knowledge? Quantification of in vivo brain 13C MR spectra following 13C glucose infusion using AMARES, Magn. Reson. Med, vol.69, issue.6, pp.1512-1522, 2013.

O. Henriksen, In vivo quantitation of metabolite concentrations in the brain by means of proton MRS, NMR Biomed, vol.8, issue.4, pp.139-148, 1995.

R. Buchli, E. Martin, and P. Boesiger, Comparison of calibration strategies for the in vivo determination of absolute metabolite concentrations in the human brain by 31P MRS, NMR Biomed, vol.7, issue.5, pp.225-230, 1994.

R. Gruetter, E. R. Seaquist, and K. Ugurbil, A mathematical model of compartmentalized neurotransmitter metabolism in the human brain, Am. J. Physiol. Endocrinol. Metab, vol.281, issue.1, pp.100-112, 2001.

P. G. Henry, G. Adriany, D. Deelchand, R. Gruetter, M. Marjanska et al., In vivo 13C NMR spectroscopy and metabolic modeling in the brain: a practical perspective, Magn. Reson. Imaging, vol.24, issue.4, pp.527-539, 2006.

J. Kurhanewicz, R. Bok, S. J. Nelson, and D. B. Vigneron, Current and potential applications of clinical 13C MR spectroscopy, J. Nucl. Med, vol.49, issue.3, pp.341-344, 2008.

K. M. Brindle, S. E. Bohndiek, F. A. Gallagher, and M. I. Kettunen, Tumor imaging using hyperpolarized 13C magnetic resonance spectroscopy, Magn. Reson. Med, vol.66, issue.2, pp.505-519, 2011.
DOI : 10.1002/mrm.22999

D. M. Wilson and J. Kurhanewicz, Hyperpolarized 13C MR for molecular imaging of prostate cancer, J. Nucl. Med, vol.55, issue.10, pp.1567-1572, 2014.

M. M. Chaumeil, P. E. Larson, H. A. Yoshihara, O. M. Danforth, D. B. Vigneron et al., Non-invasive in vivo assessment of IDH1 mutational status in glioma, Nat. Commun, vol.4, p.2429, 2013.