Y. Cheng, Single-particle cryo-EM-How did it get here and where will it go, Science, vol.361, pp.876-880, 2018.

J. Renaud, A. Chari, C. Ciferri, W. Liu, H. Rémigy et al., Cryo-EM in drug discovery: achievements, limitations and prospects, Nat. Rev. Drug Discov, vol.17, pp.471-492, 2018.

X. Bai, C. Yan, G. Yang, P. Lu, D. Ma et al., An atomic structure of human ?-secretase, Nature, vol.525, pp.212-217, 2015.

P. Lu, X. Bai, D. Ma, T. Xie, C. Yan et al., Three-dimensional structure of human ?-secretase, Nature, vol.512, pp.166-170, 2014.

R. Zhou, G. Yang, X. Guo, Q. Zhou, J. Lei et al., Recognition of the amyloid precursor protein by human ?-secretase, 2019.

G. Yang, R. Zhou, Q. Zhou, X. Guo, C. Yan et al., Structural basis of Notch recognition by human ?-secretase, Nature, vol.565, pp.192-197, 2019.

D. Laverty, R. Desai, T. Ucha?ski, S. Masiulis, W. J. Stec et al., Cryo-EM structure of the human ?1?3?2 GABAA receptor in a lipid bilayer, Nature, vol.565, pp.516-520, 2019.

S. Phulera, H. Zhu, J. Yu, D. P. Claxton, N. Yoder et al., Cryo-EM structure of the benzodiazepine-sensitive ?1?1?2S tri-heteromeric GABAA receptor in complex with GABA, 2018.

L. Gremer, D. Schölzel, C. Schenk, E. Reinartz, J. Labahn et al., 2017) Fibril structure of amyloid-?(1-42) by cryo-electron microscopy, Science, vol.358, pp.116-119

R. Guerrero-ferreira, N. M. Taylor, D. Mona, P. Ringler, M. E. Lauer et al., Cryo-EM structure of alpha-synuclein fibrils, 2018.

B. Li, P. Ge, K. A. Murray, P. Sheth, M. Zhang et al., Cryo-EM of full-length ?-synuclein reveals fibril polymorphs with a common structural kernel, Nat. Commun, vol.9, p.3609, 2018.

A. W. Fitzpatrick, B. Falcon, S. He, A. G. Murzin, G. Murshudov et al., Cryo-EM structures of tau filaments from Alzheimer's disease, Nature, vol.547, pp.185-190, 2017.

B. Falcon, W. Zhang, A. G. Murzin, G. Murshudov, H. J. Garringer et al., Structures of filaments from Pick's disease reveal a novel tau protein fold, Nature, vol.561, pp.137-140, 2018.

B. Falcon, J. Zivanov, W. Zhang, A. G. Murzin, H. J. Garringer et al., Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules, Nature, vol.568, pp.420-423, 2019.

M. Goedert, R. Jakes, M. G. Spillantini, M. Hasegawa, M. J. Smith et al., Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans, Nature, vol.383, pp.550-553, 1996.

M. Pérez, J. M. Valpuesta, M. Medina, E. Montejo-de-garcini, and J. Avila, Polymerization of tau into filaments in the presence of heparin: the minimal sequence required for tau-tau interaction, J. Neurochem, vol.67, pp.1183-1190, 1996.

W. Zhang, B. Falcon, A. G. Murzin, J. Fan, R. A. Crowther et al., Heparin-induced tau filaments are polymorphic and differ from those in Alzheimer's and Pick's diseases, 2019.

M. D. Weingarten, A. H. Lockwood, S. Y. Hwo, and M. W. Kirschner, A protein factor essential for microtubule assembly, Proc. Natl. Acad. Sci. U. S. A, vol.72, pp.1858-1862, 1975.

E. H. Kellogg, N. M. Hejab, S. Poepsel, K. H. Downing, F. Dimaio et al., Nearatomic model of microtubule-tau interactions, Science, vol.360, pp.1242-1246, 2018.

K. A. Butner and M. W. Kirschner, Tau protein binds to microtubules through a flexible array of distributed weak sites, J. Cell Biol, vol.115, pp.717-730, 1991.

T. Guo, W. Noble, and D. P. Hanger, Roles of tau protein in health and disease, Acta Neuropathol, vol.133, pp.665-704, 2017.

A. C. Leboeuf, S. F. Levy, M. Gaylord, A. Bhattacharya, A. K. Singh et al., FTDP-17 mutations in Tau alter the regulation of microtubule dynamics: an "alternative core" model for normal and pathological Tau action, J. Biol. Chem, vol.283, pp.36406-36415, 2008.

B. L. Goode and S. C. Feinstein, Identification of a novel microtubule binding and assembly domain in the developmentally regulated inter-repeat region of tau, J. Cell Biol, vol.124, pp.769-782, 1994.

B. L. Goode, P. E. Denis, D. Panda, M. J. Radeke, H. P. Miller et al., Functional interactions between the proline-rich and repeat regions of tau enhance microtubule binding and assembly, Mol. Biol. Cell, vol.8, pp.353-365, 1997.

C. Fauquant, V. Redeker, I. Landrieu, J. Wieruszeski, D. Verdegem et al., Systematic identification of tubulin-interacting fragments of the microtubule-associated protein Tau leads to a highly efficient promoter of microtubule assembly, J. Biol. Chem, vol.286, pp.33358-33368, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00618268

N. Gustke, B. Trinczek, J. Biernat, E. M. Mandelkow, and E. Mandelkow, Domains of tau protein and interactions with microtubules, Biochemistry, vol.33, pp.9511-9522, 1994.

V. Makrides, M. R. Massie, S. C. Feinstein, L. , and J. , Evidence for two distinct binding sites for tau on microtubules, Proc. Natl. Acad. Sci. U. S. A, vol.101, pp.6746-6751, 2004.

D. J. Ennulat, R. K. Liem, G. A. Hashim, and M. L. Shelanski, Two separate 18-amino acid domains of tau promote the polymerization of tubulin, J. Biol. Chem, vol.264, pp.5327-5330, 1989.

B. Gigant, I. Landrieu, C. Fauquant, P. Barbier, I. Huvent et al., Mechanism of Tau-promoted microtubule assembly as probed by NMR spectroscopy, J. Am. Chem. Soc, vol.136, pp.12615-12623, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01077829

J. P. Brion, J. Flament-durand, D. , and P. , Alzheimer's disease and tau proteins, Lancet, vol.2, p.1098, 1986.

C. L. Joachim, J. H. Morris, K. S. Kosik, and D. J. Selkoe, Tau antisera recognize neurofibrillary tangles in a range of neurodegenerative disorders, Ann. Neurol, vol.22, pp.514-520, 1987.

I. Grundke-iqbal, K. Iqbal, M. Quinlan, Y. C. Tung, M. S. Zaidi et al., Microtubule-associated protein tau. A component of Alzheimer paired helical filaments, J. Biol. Chem, vol.261, pp.6084-6089, 1986.

K. S. Kosik, C. L. Joachim, and D. J. Selkoe, Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease, Proc. Natl. Acad. Sci. U. S. A, vol.83, pp.4044-4048, 1986.

L. N. Clark, P. Poorkaj, Z. Wszolek, D. H. Geschwind, Z. S. Nasreddine et al., Pathogenic implications of mutations in the tau gene in pallido-ponto-nigral degeneration and related neurodegenerative disorders linked to chromosome 17, Proc. Natl. Acad. Sci, vol.95, pp.13103-13107, 1998.

M. Hutton, C. L. Lendon, P. Rizzu, M. Baker, S. Froelich et al., Nature, vol.393, pp.702-705, 1998.

M. G. Spillantini, M. Goedert, R. A. Crowther, J. R. Murrell, M. R. Farlow et al., Familial multiple system tauopathy with presenile dementia: A disease with abundant neuronal and glial tau filaments, Proc. Natl. Acad. Sci, vol.94, pp.4113-4118, 1997.

O. C. Andronesi, M. Von-bergen, J. Biernat, K. Seidel, C. Griesinger et al., Characterization of Alzheimer's-like paired helical filaments from the core domain of tau protein using solid-state NMR spectroscopy, J. Am. Chem. Soc, vol.130, pp.5922-5928, 2008.

V. Daebel, S. Chinnathambi, J. Biernat, M. Schwalbe, B. Habenstein et al., ) ?-Sheet core of tau paired helical filaments revealed by solid-state NMR, J. Am. Chem. Soc, vol.134, pp.13982-13989, 2012.

M. Margittai and R. Langen, Template-assisted filament growth by parallel stacking of tau, Proc. Natl. Acad. Sci. U. S. A, vol.101, pp.10278-10283, 2004.

V. Meyer and M. Margittai, Spin Labeling and Characterization of Tau Fibrils Using Electron Paramagnetic Resonance (EPR), Methods Mol. Biol, vol.1345, pp.185-199, 2016.

M. Von-bergen, P. Friedhoff, J. Biernat, J. Heberle, E. M. Mandelkow et al., Assembly of tau protein into Alzheimer paired helical filaments depends on a local sequence motif ((306)VQIVYK(311)) forming beta structure, Proc. Natl. Acad. Sci. U. S. A, vol.97, pp.5129-5134, 2000.

M. R. Sawaya, S. Sambashivan, R. Nelson, M. I. Ivanova, S. A. Sievers et al., Atomic structures of amyloid cross-beta spines reveal varied steric zippers, Nature, vol.447, pp.453-457, 2007.

I. Grundke-iqbal, K. Iqbal, Y. C. Tung, M. Quinlan, H. M. Wisniewski et al., Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology, Proc. Natl. Acad. Sci. U. S. A, vol.83, pp.4913-4917, 1986.

H. Braak, I. Alafuzoff, T. Arzberger, H. Kretzschmar, D. Tredici et al., Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol, vol.112, pp.389-404, 2006.

N. S. Gandhi, I. Landrieu, C. Byrne, P. Kukic, L. Amniai et al., A Phosphorylation-Induced Turn Defines the Alzheimer's Disease AT8 Antibody Epitope on the Tau Protein, Angew. Chem. Int. Ed Engl, vol.54, pp.6819-6823, 2015.

T. J. Malia, A. Teplyakov, R. Ernst, S. Wu, E. R. Lacy et al., Epitope mapping and structural basis for the recognition of phosphorylated tau by the anti-tau antibody AT8, Proteins, vol.84, pp.427-434, 2016.

R. Brandt and L. Bakota, Microtubule dynamics and the neurodegenerative triad of Alzheimer's disease: The hidden connection, J. Neurochem, vol.143, pp.409-417, 2017.

M. Kidd, Paired helical filaments in electron microscopy of Alzheimer's disease, Nature, vol.197, pp.192-193, 1963.

M. Kidd, Alzheimers Disease -Electron Microscopical Study, Brain, vol.87, pp.307-320, 1964.

R. A. Crowther and C. M. Wischik, Image reconstruction of the Alzheimer paired helical filament, EMBO J, vol.4, pp.3661-3665, 1985.

I. Tellez-nagel and H. M. Wi?niewski, Ultrastructure of neurofibrillary tangles in Steele-Richardson-Olszewski syndrome, Arch. Neurol, vol.29, pp.324-327, 1973.

T. Eichner and S. E. Radford, A diversity of assembly mechanisms of a generic amyloid fold, Mol. Cell, vol.43, pp.8-18, 2011.

B. Falcon, W. Zhang, M. Schweighauser, A. G. Murzin, R. Vidal et al., Tau filaments from multiple cases of sporadic and inherited Alzheimer's disease adopt a common fold, Acta Neuropathol, vol.136, pp.699-708, 2018.

Z. A. Ahmad, S. K. Yeap, A. M. Ali, W. Y. Ho, N. B. Alitheen et al., ) scFv antibody: principles and clinical application, Clin. Dev. Immunol, vol.2012, p.980250, 2012.

I. Huvent, A. Kamah, F. Cantrelle, N. Barois, C. Slomianny et al., A functional fragment of Tau forms fibers without the need for an intermolecular cysteine bridge, Biochem. Biophys. Res. Commun, vol.445, pp.299-303, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01389839

B. Niewidok, M. Igaev, F. Sündermann, D. Janning, L. Bakota et al., Presence of a carboxy-terminal pseudorepeat and disease-like pseudohyperphosphorylation critically influence tau's interaction with microtubules in axon-like processes, Mol. Biol. Cell, vol.27, pp.3537-3549, 2016.

H. Wille, G. Drewes, J. Biernat, E. M. Mandelkow, and E. Mandelkow, Alzheimer-like paired helical filaments and antiparallel dimers formed from microtubule-associated protein tau in vitro, J. Cell Biol, vol.118, pp.573-584, 1992.

S. Barghorn and E. Mandelkow, Toward a unified scheme for the aggregation of tau into Alzheimer paired helical filaments, Biochemistry, vol.41, pp.14885-14896, 2002.

J. Stöhr, H. Wu, M. Nick, Y. Wu, M. Bhate et al., A 31-residue peptide induces aggregation of tau's microtubule-binding region in cells, Nat. Chem, vol.9, pp.874-881, 2017.

W. Li, V. M. Lee, and .. , Characterization of two VQIXXK motifs for tau fibrillization in vitro, vol.45, pp.15692-15701, 2006.

M. Chemerovski-glikman, M. Frenkel-pinter, R. Mdah, A. Abu-mokh, E. Gazit et al., Inhibition of the Aggregation and Toxicity of the Minimal Amyloidogenic Fragment of Tau by Its Pro-Substituted Analogues, Chem.-Eur. J, vol.23, pp.9618-9624, 2017.

B. Bulic, M. Pickhardt, B. Schmidt, E. Mandelkow, H. Waldmann et al., Development of Tau Aggregation Inhibitors for Alzheimer's Disease, Angew. Chem.-Int. Ed, vol.48, pp.1741-1752, 2009.

K. Cisek, G. L. Cooper, C. J. Huseby, and J. Kuret, Structure and Mechanism of Action of Tau Aggregation Inhibitors, Curr. Alzheimer Res, vol.11, pp.918-927, 2014.

M. Landau, M. R. Sawaya, K. F. Faull, A. Laganowsky, L. Jiang et al., PLoS Biol, vol.9, p.1001080, 2011.

S. A. Sievers, J. Karanicolas, H. W. Chang, A. Zhao, L. Jiang et al., Structure-based design of non-natural amino-acid inhibitors of amyloid fibril formation, Nature, vol.475, pp.96-117, 2011.

C. K. Wang, S. E. Northfield, Y. Huang, M. C. Ramos, and D. J. Craik, Inhibition of tau aggregation using a naturally-occurring cyclic peptide scaffold, Eur. J. Med. Chem, vol.109, pp.342-349, 2016.

Y. K. Al-hilaly, S. J. Pollack, D. M. Vadukul, F. Citossi, J. E. Rickard et al., Alzheimer's Disease-like Paired Helical Filament Assembly from Truncated Tau Protein Is Independent of Disulfide Crosslinking, J. Mol. Biol, vol.429, pp.3650-3665, 2017.

S. Murayama, H. Mori, Y. Ihara, and M. Tomonaga, Immunocytochemical and ultrastructural studies of Pick's disease, Ann. Neurol, vol.27, pp.394-405, 1990.

L. Buée and A. Delacourte, Comparative biochemistry of tau in progressive supranuclear palsy, corticobasal degeneration, FTDP-17 and Pick's disease, Brain Pathol, vol.9, pp.681-693, 1999.

P. Friedhoff, A. Schneider, E. M. Mandelkow, and E. Mandelkow, Rapid assembly of Alzheimerlike paired helical filaments from microtubule-associated protein tau monitored by fluorescence in solution, Biochemistry, vol.37, pp.10223-10230, 1998.

P. Tacik, M. Deture, W. Lin, M. Sanchez-contreras, A. Wojtas et al., Acta Neuropathol, vol.130, pp.199-214, 2015.

N. Sibille, A. Sillen, A. Leroy, J. Wieruszeski, B. Mulloy et al., Structural impact of heparin binding to full-length Tau as studied by NMR spectroscopy, Biochemistry, vol.45, pp.12560-12572, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00108261

G. Carmel, E. M. Mager, L. I. Binder, and J. Kuret, The structural basis of monoclonal antibody Alz50's selectivity for Alzheimer's disease pathology, J. Biol. Chem, vol.271, pp.32789-32795, 1996.

G. A. Jicha, R. Bowser, I. G. Kazam, and P. Davies, Alz-50 and MC-1, a new monoclonal antibody raised to paired helical filaments, recognize conformational epitopes on recombinant tau, J. Neurosci. Res, vol.48, pp.128-132, 1997.

G. A. Jicha, B. Berenfeld, and P. Davies, Sequence requirements for formation of conformational variants of tau similar to those found in Alzheimer's disease, J. Neurosci. Res, vol.55, pp.713-723, 1999.

S. Bibow, M. D. Mukrasch, S. Chinnathambi, J. Biernat, C. Griesinger et al., The dynamic structure of filamentous tau, Angew. Chem. Int. Ed Engl, vol.50, pp.11520-11524, 2011.

E. Nogales, S. G. Wolf, and K. H. Downing, Structure of the alpha beta tubulin dimer by electron crystallography, Nature, vol.391, pp.199-203, 1998.

V. Makrides, T. E. Shen, R. Bhatia, B. L. Smith, J. Thimm et al., Microtubule-dependent oligomerization of tau. Implications for physiological tau function and tauopathies, J. Biol. Chem, vol.278, pp.33298-33304, 2003.

A. R. Duan and H. V. Goodson, Taxol-stabilized microtubules promote the formation of filaments from unmodified full-length Tau in vitro, Mol. Biol. Cell, vol.23, pp.4796-4806, 2012.

S. Elbaum-garfinkle, G. Cobb, J. T. Compton, X. Li, and E. Rhoades, Tau mutants bind tubulin heterodimers with enhanced affinity, Proc. Natl. Acad. Sci. U. S. A, vol.111, pp.6311-6316, 2014.

L. Qiang, X. Sun, T. O. Austin, H. Muralidharan, D. C. Jean et al., Tau Does Not Stabilize Axonal Microtubules but Rather Enables Them to Have Long Labile Domains, Curr. Biol, vol.28, pp.2181-2189, 2018.

P. W. Baas and L. Qiang, Tau: It's Not What You Think, Trends Cell Biol, 2019.

C. Sato, N. R. Barthélemy, K. G. Mawuenyega, B. W. Patterson, B. A. Gordon et al., Tau Kinetics in Neurons and the Human Central Nervous System. Neuron, vol.97, pp.1284-1298, 2018.

S. Prabakaran, G. Lippens, H. Steen, and J. Gunawardena, Post-translational modification: nature's escape from genetic imprisonment and the basis for dynamic information encoding, Wiley Interdiscip. Rev. Syst. Biol. Med, vol.4, pp.565-583, 2012.

L. M. Smith and N. L. Kelleher, Proteoform: a single term describing protein complexity, and Consortium for Top Down Proteomics, vol.10, pp.186-187, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02086222

C. Despres, C. Byrne, H. Qi, F. Cantrelle, I. Huvent et al., Identification of the Tau phosphorylation pattern that drives its aggregation, Proc. Natl. Acad. Sci. U. S. A, vol.114, pp.9080-9085, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01620128

S. Min, S. Cho, Y. Zhou, S. Schroeder, V. Haroutunian et al., Acetylation of tau inhibits its degradation and contributes to tauopathy, Neuron, vol.67, pp.953-966, 2010.

T. J. Cohen, J. L. Guo, D. E. Hurtado, L. K. Kwong, I. P. Mills et al., The acetylation of tau inhibits its function and promotes pathological tau aggregation, Nat. Commun, vol.2, p.252, 2011.

A. Kamah, I. Huvent, F. Cantrelle, H. Qi, G. Lippens et al., Nuclear magnetic resonance analysis of the acetylation pattern of the neuronal Tau protein, Biochemistry, vol.53, pp.3020-3032, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01077868

F. Liu, K. Iqbal, I. Grundke-iqbal, G. W. Hart, and C. Gong, O-GlcNAcylation regulates phosphorylation of tau: A mechanism involved in Alzheimer's disease, Proc. Natl. Acad. Sci, vol.101, pp.10804-10809, 2004.

Y. Zhu, X. Shan, S. A. Yuzwa, and D. J. Vocadlo, The emerging link between O-GlcNAc and Alzheimer disease, J. Biol. Chem, vol.289, pp.34472-34481, 2014.