A. Gjörloff-wingren, Subcellular localization of intracellular protein tyrosine phosphatases in T cells, Eur. J. Immunol, vol.30, pp.2412-2421, 2000.

W. J. Hendriks and F. Böhmer, Non-transmembrane PTPs in Cancer in Protein Tyrosine Phosphatases in Cancer, 2016.

S. Töpffer, A. Müller-schiffmann, K. Matentzoglu, M. Scheffner, and G. Steger, Protein tyrosine phosphatase H1 is a target of the E6 oncoprotein of high-risk genital human papillomaviruses, J. Gen. Virol, vol.88, pp.2956-2965, 2007.

E. Hsu, Suppression of hepatitis B viral gene expression by protein-tyrosine phosphatase PTPN3, J. Biomed. Sci, vol.14, pp.731-744, 2007.

, Human papillomavirus (HPV) and cervical cancer, p.17, 2018.

M. Thomas, M. P. Myers, P. Massimi, C. Guarnaccia, and L. Banks, Analysis of Multiple HPV E6 PDZ Interactions Defines TypeSpecific PDZ Fingerprints That Predict Oncogenic Potential, PLoS Pathog, vol.12, p.1005766, 2016.

K. Chen, Reciprocal allosteric regulation of p38? and PTPN3 involves a PDZ domain-modulated complex formation, Sci. Signal, vol.7, p.98, 2014.

K. Chen, Substrate specificity and plasticity of FERM-containing protein tyrosine phosphatases, Struct. Lond. Engl, issue.23, pp.653-664, 1993.

P. Maisonneuve, Regulation of the catalytic activity of the human phosphatase PTPN4 by its PDZ domain, FEBS J, vol.281, pp.4852-4865, 2014.

P. Maisonneuve, Molecular Basis of The Interaction of the Human Protein Tyrosine Phosphatase Non-receptor Type 4 (PTPN4) with the Mitogen-Activated Protein Kinase p38?, J. Biol. Chem, 2016.

N. Babault, Peptides targeting the PDZ domain of PTPN4 are efficient inducers of glioblastoma cell death, Struct. Lond. Engl, pp.1518-1524, 1993.

R. Vincentelli, Quantifying domain-ligand affinities and specificities by high-throughput holdup assay, Nat. Methods, vol.12, pp.787-793, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01439029

K. S. Christopherson, B. J. Hillier, W. A. Lim, and D. S. Bredt, PSD-95 assembles a ternary complex with the N-methyl-D-aspartic acid receptor and a bivalent neuronal NO synthase PDZ domain, J. Biol. Chem, vol.274, pp.27467-27473, 1999.

G. P. Manjunath, P. L. Ramanujam, and S. Galande, Structure function relations in PDZ-domain-containing proteins: Implications for protein networks in cellular signalling, J. Biosci, vol.43, pp.155-171, 2018.

Y. Shen and A. Bax, Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks, J. Biomol. NMR, vol.56, pp.227-241, 2013.

A. Ortega, D. Amorós, and J. García-de-la-torre, Prediction of hydrodynamic and other solution properties of rigid proteins from atomic-and residue-level models, Biophys. J, vol.101, pp.892-898, 2011.

H. Lee and J. J. Zheng, PDZ domains and their binding partners: structure, specificity, and modification, Cell Commun. Signal, vol.8, 2010.

M. Li, Protein tyrosine phosphatase PTPN3 inhibits lung cancer cell proliferation and migration by promoting EGFR endocytic degradation, Oncogene, vol.34, pp.3791-3803, 2015.

S. Hou, PTPH1 dephosphorylates and cooperates with p38gamma MAPK to increase ras oncogenesis through PDZmediated interaction, Cancer Res, vol.70, pp.2901-2910, 2010.

Y. Zheng, J. Schlondorff, and C. P. Blobel, Evidence for regulation of the tumor necrosis factor alpha-convertase (TACE) by proteintyrosine phosphatase PTPH1, J. Biol. Chem, vol.277, pp.42463-42470, 2002.

C. K. Wang, L. Pan, J. Chen, and M. Zhang, Extensions of PDZ domains as important structural and functional elements, Protein Cell, vol.1, pp.737-751, 2010.

S. Charbonnier, The structural and dynamic response of MAGI-1 PDZ1 with noncanonical domain boundaries to the binding of human papillomavirus E6, J. Mol. Biol, vol.406, pp.745-763, 2011.

E. Terrien, Interference with the PTEN-MAST2 interaction by a viral protein leads to cellular relocalization of PTEN, Sci. Signal, vol.5, p.58, 2012.

F. Delhommel, Deciphering the unconventional peptide binding to the PDZ domain of MAST2, Biochem. J, vol.469, pp.159-168, 2015.

E. J. Fuentes, C. J. Der, and A. L. Lee, Ligand-dependent Dynamics and Intramolecular Signaling in a PDZ Domain, J. Mol. Biol, vol.335, pp.1105-1115, 2004.

G. Hultqvist, Energetic Pathway Sampling in a Protein Interaction Domain, Structure, vol.21, pp.1193-1202, 2013.

L. C. Van-den-berk, An Allosteric Intramolecular PDZ-PDZ Interaction Modulates PTP-BL PDZ2 Binding Specificity ?, Biochemistry, vol.46, pp.13629-13637, 2007.

B. H. Chang, A Systematic Family-wide Investigation Reveals that ?30% of Mammalian PDZ Domains Engage in PDZ-PDZ Interactions, Chem. Biol, vol.18, pp.1143-1152, 2011.

K. Ganti, The Human Papillomavirus E6 PDZ Binding Motif: From Life Cycle to Malignancy, Viruses, vol.7, pp.3530-3551, 2015.

R. T. Javier and A. P. Rice, Emerging theme: cellular PDZ proteins as common targets of pathogenic viruses, J. Virol, vol.85, pp.11544-11556, 2011.

X. Liu and E. J. Fuentes, Emerging Themes in PDZ Domain Signaling: Structure, Function, and Inhibition, International Review of Cell and Molecular Biology, 2018.

C. Préhaud, Attenuation of rabies virulence: takeover by the cytoplasmic domain of its envelope protein, Sci. Signal, vol.3, p.5, 2010.

K. Hironaka, H. Umemori, T. Tezuka, M. Mishina, and T. Yamamoto, The protein-tyrosine phosphatase PTPMEG interacts with glutamate receptor delta 2 and epsilon subunits, J. Biol. Chem, vol.275, pp.16167-16173, 2000.

M. J. Chen, J. E. Dixon, and G. Manning, Genomics and evolution of protein phosphatases, Sci Signal, vol.10, p.1796, 2017.

N. Sreerama and R. W. Woody, Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set, Anal. Biochem, vol.287, pp.252-260, 2000.

W. F. Vranken, The CCPN data model for NMR spectroscopy: development of a software pipeline, Proteins, vol.59, pp.687-696, 2005.

F. Delaglio, NMRPipe: a multidimensional spectral processing system based on UNIX pipes, J. Biomol. NMR, vol.6, pp.277-293, 1995.

W. X. Kabsch and D. Acta-crystallogr, Biol. Crystallogr, vol.66, pp.125-132, 2010.

A. Legrandp and J. Cv-gphl, Legrandp/Xdsme: Version Working With Xds Version: June 1, 2017 And Previous, 2017.

M. D. Winn, Overview of the CCP4 suite and current developments, Acta Crystallogr. D Biol. Crystallogr, vol.67, pp.235-242, 2011.

A. J. Mccoy, Solving structures of protein complexes by molecular replacement with Phaser, Acta Crystallogr. D Biol. Crystallogr, vol.63, pp.32-41, 2007.

P. Emsley, B. Lohkamp, W. G. Scott, and K. Cowtan, Features and development of Coot, Acta Crystallogr. D Biol. Crystallogr, vol.66, pp.486-501, 2010.

P. D. Adams, PHENIX: a comprehensive Python-based system for macromolecular structure solution, Acta Crystallogr. D Biol. Crystallogr, vol.66, pp.213-221, 2010.

S. C. Lovell, Structure validation by Calpha geometry: phi,psi and Cbeta deviation, Proteins, vol.50, pp.437-450, 2003.

G. Faure, J. Andreani, and R. Guerois, InterEvol database: exploring the structure and evolution of protein complex interfaces, Nucleic Acids Res, vol.40, pp.847-856, 2012.

K. Katoh and D. M. Standley, MAFFT multiple sequence alignment software version 7: improvements in performance and usability, Mol. Biol. Evol, vol.30, pp.772-780, 2013.

A. M. Waterhouse, J. B. Procter, D. M. Martin, M. Clamp, and G. J. Barton, Jalview Version 2-a multiple sequence alignment editor and analysis workbench, Bioinforma. Oxf. Engl, vol.25, pp.1189-1191, 2009.