, Specific steps were performed as described previously (32): cDNA sequences were amplified from RT-PCR at day 4 (meioticprophase stage) with appropriate primers and Phusion (ThermoFisher Scientific) according to the manufacturer's indications; amplified fragments were cloned directly into pJET1.2 (ThermoFisher Scientific); after plasmid amplification in Escherichia coli, all inserts were sequenced to check for the absence of adventitious mutations before further digestion and cloning into pGBT9 (GenBank accession no. U07646) and pGAD424 (GenBank accession no. U07647). Full ZIP2 or ZIP4 cDNA were used to construct ZIP2N, ZIP2C, ZIP4N, and ZIP4C subdomain fragments by amplification using primers containing restriction enzyme sites. Restriction sites were selected for fusing the coding sequence of the amplification fragment with GAL4 binding domain (pGBT9) or activating domain (pGAD424), pp.69-73

. Rt-qpcr-experiment, cDNA and RT-qPCR were performed as described in ref, vol.32

. Cytology, M. Gfp, and D. , ?g/mL) signals were observed, either on living material or after fixation in 4% paraformaldehyde, with a Zeiss Axioplan microscope with a CCD Princeton camera, a Leica DMIRE2 microscope (Leica) with a CoolSNAPHQ CCD camera (Roper Scientific), or a Delta Vision OMXTM platform (3D-SIM; Applied Precision), MetaMorph software (Universal Imaging Corp.) and public domain software ImageJ

I. Lam and S. Keeney, Mechanism and regulation of meiotic recombination initiation, Cold Spring Harb Perspect Biol, vol.7, p.16634, 2014.

N. Hunter, Meiotic recombination: The essence of heredity, Cold Spring Harb Perspect Biol, vol.7, p.16618, 2015.

S. L. Page and R. S. Hawley, The genetics and molecular biology of the synaptonemal complex, Annu Rev Cell Dev Biol, vol.20, pp.525-558, 2004.

J. Fraune, Evolutionary history of the mammalian synaptonemal complex, Chromosoma, vol.125, pp.355-360, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02012363

J. Gao and M. P. Colaiácovo, Zipping and unzipping: Protein modifications regulating synaptonemal complex dynamics, Trends Genet, vol.34, pp.232-245, 2018.

D. Zickler and N. Kleckner, Recombination, pairing, and synapsis of homologs during meiosis, Cold Spring Harb Perspect Biol, vol.7, p.16626, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01199651

S. M. Albini and G. H. Jones, Synaptonemal complex spreading in Allium cepa and A. fistulosum. I. The initiation and sequence of pairing, Chromosoma, vol.95, pp.324-338, 1987.

P. B. Moens, E. Marcon, J. S. Shore, N. Kochakpour, and B. Spyropoulos, Initiation and resolution of interhomolog connections: Crossover and non-crossover sites along mouse synaptonemal complexes, J Cell Sci, vol.120, pp.1017-1027, 2007.

M. Oliver-bonet, M. Campillo, P. J. Turek, E. Ko, and R. H. Martin, Analysis of replication protein A (RPA) in human spermatogenesis, Mol Hum Reprod, vol.13, pp.837-844, 2007.

J. K. Holloway, M. A. Morelli, P. L. Borst, and P. E. Cohen, Mammalian BLM helicase is critical for integrating multiple pathways of meiotic recombination, J Cell Biol, vol.188, pp.779-789, 2010.

M. Shinohara, S. D. Oh, N. Hunter, and A. Shinohara, Crossover assurance and crossover interference are distinctly regulated by the ZMM proteins during yeast meiosis, Nat Genet, vol.40, pp.299-309, 2008.

T. Tsubouchi, H. Zhao, and G. S. Roeder, The meiosis-specific Zip4 protein regulates crossover distribution by promoting synaptonemal complex formation together with Zip2, Dev Cell, vol.10, pp.809-819, 2006.

G. V. Börner, N. Kleckner, and N. Hunter, Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis, Cell, vol.117, pp.29-45, 2004.

O. M. Mazina, A. V. Mazin, T. Nakagawa, R. D. Kolodner, and S. C. Kowalczykowski, Saccharomyces cerevisiae Mer3 helicase stimulates 3?-5? heteroduplex extension by Rad51; implications for crossover control in meiotic recombination, Cell, vol.117, pp.47-56, 2004.

T. Snowden, S. Acharya, C. Butz, M. Berardini, and R. Fishel, hMSH4-hMSH5 recognizes Holliday Junctions and forms a meiosis-specific sliding clamp that embraces homologous chromosomes, Mol Cell, vol.15, pp.437-451, 2004.

A. Lynn, R. Soucek, and G. V. Börner, ZMM proteins during meiosis: Crossover artists at work, Chromosome Res, vol.15, pp.591-605, 2007.
DOI : 10.1007/s10577-007-1150-1

URL : https://link.springer.com/content/pdf/10.1007%2Fs10577-007-1150-1.pdf

N. Macaisne, SHOC1, an XPF endonuclease-related protein, is essential for the formation of class I meiotic crossovers, Curr Biol, vol.18, pp.1432-1437, 2008.

K. Voelkel-meiman, S. Cheng, S. J. Morehouse, and A. J. Macqueen, Synaptonemal complex proteins of budding yeast define reciprocal roles in MutS?-mediated crossover formation, Genetics, vol.203, pp.1091-1103, 2016.

D. Muyt and A. , A meiotic XPF-ERCC1-like complex recognizes joint molecule recombination intermediates to promote crossover formation, Genes Dev, vol.32, pp.283-296, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01998281

M. F. Guiraldelli, SHOC1 is a ERCC4-(HhH)2-like protein, integral to the formation of crossover recombination intermediates during mammalian meiosis, PLoS Genet, vol.14, p.1007381, 2018.

K. Arora and K. D. Corbett, The conserved XPF:ERCC1-like Zip2:Spo16 complex controls meiotic crossover formation through structure-specific DNA binding, Nucleic Acids Res, vol.47, pp.2365-2376, 2019.

F. Yang, Meiotic failure in male mice lacking an X-linked factor, Genes Dev, vol.22, pp.682-691, 2008.

L. Chelysheva, Zip4/Spo22 is required for class I CO formation but not for synapsis completion in Arabidopsis thaliana, PLoS Genet, vol.3, p.83, 2007.

Y. Shen, ZIP4 in homologous chromosome synapsis and crossover formation in rice meiosis, J Cell Sci, vol.125, pp.2581-2591, 2012.

C. A. Adelman and J. Petrini, ZIP4H (TEX11) deficiency in the mouse impairs meiotic double strand break repair and the regulation of crossing over, PLoS Genet, vol.4, p.1000042, 2008.

Q. Zhang, J. Shao, H. Fan, and C. Yu, Evolutionarily-conserved MZIP2 is essential for crossover formation in mammalian meiosis, Commun Biol, vol.1, pp.147-157, 2018.

D. Van-heemst, F. James, S. Pöggeler, V. Berteaux-lecellier, and D. Zickler, Spo76p is a conserved chromosome morphogenesis protein that links the mitotic and meiotic programs, Cell, vol.98, pp.261-271, 1999.

E. Espagne, Sme4 coiled-coil protein mediates synaptonemal complex assembly, recombinosome relocalization, and spindle pole body morphogenesis, Proc Natl Acad Sci, vol.111, pp.10614-10619, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00664417

A. Storlazzi, Recombination proteins mediate meiotic spatial chromosome organization and pairing, Cell, vol.141, pp.94-106, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00506415

L. Zhang, E. Espagne, A. De-muyt, D. Zickler, and N. E. Kleckner, Interference-mediated synaptonemal complex formation with embedded crossover designation, Proc. Natl. Acad. Sci. U.S.A, vol.111, pp.5059-5068, 2014.

P. R. Chua and G. S. Roeder, Zip2, a meiosis-specific protein required for the initiation of chromosome synapsis, Cell, vol.93, pp.349-359, 1998.

S. Tessé, Asy2/Mer2: An evolutionarily conserved mediator of meiotic recombination, pairing, and global chromosome compaction, Genes Dev, vol.31, pp.1880-1893, 2017.

I. Ghosh, A. D. Hamilton, and L. Regan, Antiparallel leucine zipper-directed protein reassembly: Application to the green fluorescent protein, J Am Chem Soc, vol.122, pp.5658-5659, 2000.

D. Muyt and A. , E3 ligase Hei10: A multifaceted structure-based signaling molecule with roles within and beyond meiosis, Genes Dev, vol.28, pp.1111-1123, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00993602

P. B. Moens, The fine structure of meiotic chromosome polarization and pairing in Locusta migratoria spermatocytes, Chromosoma, vol.28, pp.1-25, 1969.

P. B. Holm, Three-dimensional reconstruction of chromosome pairing during the zygotene stage of meiosis in Lilium longiflorum (thunb.), Carlsberg Res Commun, vol.42, pp.103-151, 1977.

M. Rong, A. Matsuda, Y. Hiraoka, and J. Lee, Meiotic cohesin subunits RAD21L and REC8 are positioned at distinct regions between lateral elements and transverse filaments in the synaptonemal complex of mouse spermatocytes, J Reprod Dev, vol.62, pp.623-630, 2016.

L. K. Anderson, K. D. Hooker, and S. M. Stack, The distribution of early recombination nodules on zygotene bivalents from plants, Genetics, vol.159, pp.1259-1269, 2001.

M. Serrentino, E. Chaplais, V. Sommermeyer, and V. Borde, Differential association of the conserved SUMO ligase Zip3 with meiotic double-strand break sites reveals regional variations in the outcome of meiotic recombination, PLoS Genet, vol.9, p.1003416, 2013.

N. Humphryes, The Ecm11-Gmc2 complex promotes synaptonemal complex formation through assembly of transverse filaments in budding yeast, PLoS Genet, vol.9, p.1003194, 2013.

R. H. Schiestl and R. D. Gietz, High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier, Curr Genet, vol.16, pp.339-346, 1989.