J. L. Kirschvink, A. Kobayashi-kirschvink, and B. J. Woodford, Magnetite biomineralization in the human brain, Proc Natl Acad Sci, vol.89, pp.7683-7690, 1992.

J. Dobson and P. Grassi, Magnetic properties of human hippocampal tissueevaluation of artefact and contamination sources, Brain Res Bull, vol.39, pp.255-264, 1996.

Q. Pankhurst, D. Hautot, N. Khan, and J. Dobson, Increased levels of magnetic compounds in Alzheimer's disease, J Alzheimers Dis, vol.13, pp.49-52, 2008.

P. P. Grassi-schultheiss, F. Heller, and J. Dobson, Analysis of magnetic mineral in the human heart, spleen and liver, Biometals, vol.10, pp.351-386, 1997.

B. A. Maher, I. Ahmed, V. Karloukovski, D. A. Maclaren, P. G. Foulds et al., Magnetite pollution nanoparticles in the human brain, Proc Natl Acad Sci, vol.113, pp.10797-1801, 2016.

S. A. Gilder, M. Wack, L. Kaub, S. C. Roud, N. Petersen et al., Distribution of magnetic remanence carriers in the human brain, Sci Rep, vol.8, p.11363, 2018.

A. M. Hirt, F. Brem, M. Hanzlik, and D. Faivre, Anomalous magnetic properties of brain tissue at low temperature: the 50 K anomaly, J Geophys Res, vol.111, pp.12-18, 2006.

P. P. Schultheiss-grassi, R. Wessiken, and J. Dobson, TEM investigations of biogenic magnetite extracted from the human hippocampus

, Biochim Biophys Acta, vol.1426, pp.212-218, 1999.

J. Kirschvink, A. Kobayashi-kirschvink, J. C. Diaz-ricci, and S. J. Kirscvink, Magnetite in human tissues: a mechanism for the biological effects of weak ELF magnetic fields, vol.1, pp.101-114, 1992.

O. Gorobets, S. Gorobets, and M. Koralewski, Physiological origin of biogenic magnetite nanoparticles in health and disease: from bacteria to humans, Int J Nanomed, vol.12, pp.4371-95, 2017.

A. Kobayashi, N. Yamamoto, and J. Kirschvink, Study of inorganic crystalline solids in biosystems: magnetite in the human body, J Japan Soc Powder and Powder Metall, vol.43, pp.1354-60, 1996.

C. Quintana and L. Gutiérrez, Could a dysfunction of ferritin be a determinant factor in the aetiology of some neurodegenerative diseases?, Biochim Biophys Acta, vol.1800, pp.770-82, 2010.

L. Néel, Théorie du traînage magnétique des ferromagnétiques en grains finns avec application aux terres cuites, Annales Geophysicae, vol.5, pp.99-136, 1949.

V. Reichel, A. Kovács, M. Kumari, E. Bereczk-tompa, E. Schneck et al., Single crystalline superstructured stable single domain magnetite nanoparticles. Sci Rep, vol.7, p.45484, 2017.
DOI : 10.1038/srep45484

URL : https://www.nature.com/articles/srep45484.pdf

A. R. Muxworthy and L. Williams, Critical single-domain/multidomain grain sizes in noninteracting and interacting elongated magnetie particles: implications for magnetosomes, J Geophys Res, vol.111, pp.12-12, 2006.
DOI : 10.1029/2006jb004588

URL : https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006JB004588

A. R. Muxworthy and W. Williams, Critical superparamagnetic/singledomain/multidomain grain sizes in noninteracting and interacting elongated magnetie particles: implications for magnetosomes, J Royal Soc Interface, vol.6, pp.1780-1179, 1973.
DOI : 10.1029/2006jb004588

URL : https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006JB004588

A. J. Newell and R. T. Merrill, Single-domain critical sizes for coercivity and remanence, J Geophys Res, vol.104, pp.617-62, 1999.
DOI : 10.1029/1998jb900039

URL : https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/1998JB900039

E. Calabrò, S. Condello, M. Currò, and N. Ferlazzo, Effects of low intensity static magnetic field on FTIR spectra and ROS production in SH-SY5Y neuronal-like cells, Bioelectromagnetics, vol.34, pp.618-647, 2013.

S. O. Raja and A. K. Dasgupta, Instant response of live HeLA cells to static magnetic field and its magnetic adaptation, Cell Behav, 2014.

M. T. Zhu, Y. Wang, W. Y. Feng, B. Wang, H. Ouyang et al., Oxidative stress and apoptosis induced by iron oxide nanoparticles in cultures umbilical endothelial cells, J Nanosci Nanotechnol, vol.10, pp.8584-90, 2010.

R. Gieré, Magnetite in the human body: Biogenic vs. anthropogenic, Proc Natl Acad Sci, vol.113, pp.11986-11993, 2016.

E. Carboni and P. Lingor, Insights on the interaction of alpha-synuclein and metals in the pathophysiology of Parkinson's disease, Metallomics, vol.7, pp.395-404, 2015.

N. Joshi, S. Basak, S. Kundu, G. De, A. Mukhopadhyay et al., Attenuation of the early events of ?-synuclein aggregation: a fluorescence correlation spectroscopy and laser scanning microscopy study in the presence of surface-coated Fe 3 O 4 nanoparticles, Langmuir, vol.31, pp.1469-78, 2015.

D. Tredici, K. Braak, and H. , Sporadic Parkinson's disease: development and distribution of ?-synuclein pathology, Neuropathol Appl Neurobiol, vol.42, pp.33-50, 2016.

I. A. Donadiov, V. Leta, M. D. Giannoccaro, C. Scaglione, and P. Martinelli, Skin nerve ?-synuclein deposits: a biomarker for idiopathic Parkinson disease, Neurology, vol.82, pp.1362-1371, 2014.

J. Massano and K. P. Bhatia, Clinical approach to Parkinson's disease: features, diagnosis, and principles of management. Cold Spring Har, Perspect Med, vol.2, p.8870, 2012.

E. P. Wohlfarth, Relations between different modes of acquisition of the remanent magnetization of ferromagnetic particles, J Appl Phys, vol.29, p.595, 1958.

S. Cisowski, Interacting vs. non-interacting single-domain behavior in natural and synthetic samples, Phys Earth Planet Inter, vol.26, pp.77-83, 1981.

W. Lowrie and M. Fuller, On the alternating field demagnetisation characteristics of multi-domain thermoremanent magnetization in magnetite, J Geophys Res, vol.76, pp.6339-6388, 1971.

F. Brem, A. M. Hiert, M. Winklhofer, K. Frei, Y. Yonekawa et al., Magnetic iron compounds in the human brain: a comparison of tumour and hippocampal tissue, J Royal Soc Interphase, vol.3, pp.833-841, 2006.

C. Colliex, T. Manoubi, and C. Oritz, Electron energy loss spectroscopy near edge fine structures in the iron-oxygen system, Phys Rev B, vol.44, pp.11402-11413, 1991.

Ö. Özdemir and D. J. Dunlop, Hallmarks of maghemitization in low-temperature remanence cycling of partially oxidized magnetite nanoparticles, J Geophys Res, vol.115, 2010.

F. Walz and H. Kronmüller, Evidence for a single-stage Verweytransition in perfect magnetite, Philos Mag B, vol.84, pp.623-631, 1991.

B. M. Moskowitz, M. J. Jackson, and C. Kissel, Low-temperature magnetic behavior of titanomagnetites, Earth Planet Sci Lett, vol.157, pp.141-150, 1998.

T. Inase and Y. Miyamoto, Anomalous behavior in temperature dependence of pyroelectric polarization and magnetoelectric polarization of magnetite below 60 K, J. Phys Soc Jpn, vol.56, pp.3683-3691, 1987.

B. M. Moskowitz, R. B. Frankel, S. A. Walton, D. Dickson, K. Wang et al., Determination of the pre-exponential frequency factor for superparamagnetic maghemite particles in magnetoferritin, J Geophys Res, vol.102, pp.22671-80, 1997.

S. Schubert, Magnetic susceptibility of oxygen adsorbed on graphite, Phys Rev Lett, vol.40, pp.723-728, 1978.

Y. Gossuin, D. Hautot, R. N. Muller, Q. Pankhurst, J. Dobson et al., Looking for biogenic magnetite in brain ferritin using NMR relaxometry, NMR Biomed, vol.18, pp.469-72, 2005.

J. Baumgartner, A. Dey, P. H. Bomans, L. Coadeu, C. Fratzl et al., Nucleation and growth of magnetite solution, Nat Mater, vol.12, pp.310-314, 2013.

A. Van-de-walle, A. P. Sangnier, A. Abou-hassan, A. Curcio, M. Hémadi et al., Biosynthesis of magnetite nanoparticles from nanodegeneration products revealed in human stem cells, Proc Natl Acad Sci, vol.116, pp.4044-53, 2019.

A. Barkatt, A. L. Pulvirenti, A. Hadadi, M. A. Viragh, and C. , Composition and particle size of superparamagnetic corrosion products in tap water, Water Res, vol.43, pp.3319-3344, 2009.

Y. N. Vodyanitskii and S. A. Shoba, Ferrihydrite in soils, Eur J Soil Sci, vol.49, pp.796-80, 2016.

C. Hansel, S. G. Brenner, J. Neiss, and A. Dohnalkova, Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow, Geochim Cosmochim Acta, vol.67, pp.2977-92, 2003.

E. Goldstein, D. M. Citro, V. A. Peraino, and S. A. Cross, Desulfovibrio desulfuricans bacteremia and review of human desulfovibrio infections, J Clin Microbiol, vol.41, 2003.

N. I. Chistyakova, V. S. Rusakov, D. G. Zavarzina, A. I. Slobodkin, and T. V. Gorohova, Mössbauer study of magnetite formation by iron-and sulfatereducing bacteria, Hyperfine Interact, vol.157, pp.411-415, 2004.

D. R. Lovley, E. E. Roden, E. Phillips, and J. Woodward, Enzymatic iron and uranium reduction by sulfate-reducing bacteria, Mar Geol, vol.113, pp.41-53, 1993.

A. R. Hirsch and G. Zavala, Long term effects on the olfactory system of exposure to hydrogen sulphide, Occup Environ Med, vol.56, pp.284-291, 1999.

R. L. Doty, Olfaction in Parkinson's disease and related disorders, Neurobiol Dis, vol.46, pp.527-55, 2012.

L. L. Bergin and F. A. Witzmann, Nanoparticle toxicity by the gastrointestinal route: evidence and knowledge gaps, Int J Biomed Nanosci Nanotechnol, vol.3, pp.1-2, 2013.

D. Zanella, E. Bossi, R. Gomati, C. Bastos, N. Faria et al., Iron oxide nano-particles can cross plasma membranes, Sci. Rep, vol.7, p.11413, 2017.

R. Chandra, A. Hiniker, Y. Kuo, R. L. Nussbaum, and R. A. Liddle, ?-Synuclein in gut endocrine cells and its implications for Parkinson's disease, J Clin Invest, vol.2, p.92295, 2017.

R. A. Liddle, Parkinson's disease from the gut, Brain Res, vol.15, pp.201-207, 2018.

H. H. Gustafson, D. Holt-casper, D. W. Graniger, and H. Ghandehari, Nanoparticle uptake: the phagocyte problem, Nano Today, vol.10, pp.487-510, 2015.

K. Weber-matthiesen and W. Sterry, Organization of the monocyte/macrophage system of normal human skin, J Invest Dermatol, vol.95, pp.83-92, 1990.

E. A. Sykes, Q. Dai, K. M. Tsoi, D. M. Hwang, and W. Chan, Nanoparticle exposure in animals can be visualized in the skin and analyzed via skin biopsy, Nat Commun, vol.13, p.3796, 2014.

W. X. Ding and X. M. Yin, Mitophagy: mechanims, pathophysiological roles, and analysis, Biol Chem, vol.393, pp.547-64, 2012.

J. A. Lees and . Parkinson-chimaera, Neurology, pp.2-11, 2009.

G. Rizzo, M. Copetti, S. Arcuti, D. Martino, A. Fontana et al., Accuracy of clinical diagnosis of Parkinson disease: a systematic review and metaanalysis, Neurology, vol.86, pp.566-76, 2016.

, Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest

. Copyright-©-;-murros, . Wasiljeff, . Macías-sánchez, . Faivre, . Soinne et al., This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, 2019.