H. M. Abdul, M. A. Sama, J. L. Furman, D. M. Mathis, T. L. Beckett et al., Cognitive decline in Alzheimer's disease is associated with selective changes in calcineurin/NFAT signaling, J. Neurosci, vol.29, pp.12957-12969, 2009.

R. Abeti, A. Y. Abramov, and M. R. Duchen, Beta-amyloid activates PARP causing astrocytic metabolic failure and neuronal death, Brain, vol.134, pp.1658-1672, 2011.

A. Y. Abramov, L. Canevari, and M. R. Duchen, Beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase, J. Neurosci, vol.24, pp.565-575, 2004.

Y. Agid, Parkinson's disease: pathophysiology, Lancet, vol.337, pp.1321-1324, 1991.

C. Agulhon, M. Y. Sun, T. Murphy, T. Myers, K. Lauderdale et al., Calcium signaling and gliotransmission in normal vs. reactive astrocytes, Front. Pharmacol, vol.3, p.139, 2012.

I. Allaman, M. Belanger, and P. J. Magistretti, Astrocyte-neuron metabolic relationships: for better and for worse, Trends Neurosci, vol.34, pp.76-87, 2011.

I. Allaman, M. Gavillet, M. Belanger, T. Laroche, D. Viertl et al., Amyloid-beta aggregates cause alterations of astrocytic metabolic phenotype: impact on neuronal viability, J. Neurosci, vol.30, pp.3326-3338, 2010.

M. A. Anderson, Y. Ao, and M. V. Sofroniew, Heterogeneity of reactive astrocytes, Neurosci. Lett, vol.565, pp.23-29, 2014.

J. Apelt, K. Ach, and R. Schliebs, Aging-related down-regulation of neprilysin, a putative beta-amyloid-degrading enzyme, in transgenic Tg2576 Alzheimer-like mouse brain is accompanied by an astroglial upregulation in the vicinity of beta-amyloid plaques, Neurosci. Lett, vol.339, pp.183-186, 2003.

B. Appel, Nonmammalian vertebrate glia, pp.24-31, 2013.

A. Araque, G. Carmignoto, P. G. Haydon, S. H. Oliet, R. Robitaille et al., Gliotransmitters travel in time and space, Neuron, vol.81, pp.728-739, 2014.

T. Arzberger, K. Krampfl, S. Leimgruber, and A. Weindl, Changes of NMDA receptor subunit (NR1, NR2B) and glutamate transporter (GLT1) mRNA expression in Huntington's disease-an in situ hybridization study, J. Neuropathol. Exp. Neurol, vol.56, pp.440-454, 1997.

R. M. Bachoo, R. S. Kim, K. L. Ligon, E. A. Maher, C. Brennan et al., Molecular diversity of astrocytes with implications for neurological disorders, Proc. Natl. Acad. Sci. U.S.A, vol.101, pp.8384-8389, 2004.

L. H. Barbeito, M. Pehar, P. Cassina, M. R. Vargas, H. Peluffo et al., A role for astrocytes in motor neuron loss in amyotrophic lateral sclerosis, Brain Res. Brain Res. Rev, vol.47, pp.263-274, 2004.

C. Barcia, A. Sanchez-bahillo, E. Fernandez-villalba, V. Bautista, Y. P. Poza et al., Evidence of active microglia in substantia nigra pars compacta of parkinsonian monkeys 1 year after MPTP exposure, Glia, vol.46, pp.402-409, 2004.

S. Bardehle, M. Kruger, F. Buggenthin, J. Schwausch, J. Ninkovic et al., Live imaging of astrocyte responses to acute injury reveals selective juxtavascular proliferation, Nat. Neurosci, vol.16, pp.580-586, 2013.

M. F. Beal, Parkinson's disease: a model dilemma, Nature, vol.466, pp.8-10, 2010.

M. Belanger, I. Allaman, and P. J. Magistretti, Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation, Cell Metab, vol.14, pp.724-738, 2011.

L. Ben-haim, K. Ceyzeriat, M. A. Carrillo-de-sauvage, F. Aubry, G. Auregan et al., The JAK/STAT3 Pathway is a common inducer of astrocyte reactivity in Alzheimer's and Huntington's diseases, J. Neurosci, vol.35, pp.2817-2829, 2015.

C. Bendotti, C. Atzori, R. Piva, M. Tortarolo, M. J. Strong et al., Activated p38MAPK is a novel component of the intracellular inclusions found in human amyotrophic lateral sclerosis and mutant SOD1 transgenic mice, J. Neuropathol. Exp. Neurol, vol.63, pp.113-119, 2004.

C. Bendotti, M. Tortarolo, S. K. Suchak, N. Calvaresi, L. Carvelli et al., Transgenic SOD1 G93A mice develop reduced GLT-1 in spinal cord without alterations in cerebrospinal fluid glutamate levels, J. Neurochem, vol.79, pp.737-746, 2001.

Y. Bernardinelli, J. Randall, E. Janett, I. Nikonenko, S. Konig et al., Activity-dependent structural plasticity of perisynaptic astrocytic domains promotes excitatory synapse stability, Curr. Biol, vol.24, pp.1679-1688, 2014.

C. Beurrier, M. Faideau, K. E. Bennouar, C. Escartin, . Kerkerian-le et al., Ciliary neurotrophic factor protects striatal neurons against excitotoxicity by enhancing glial glutamate uptake, PLoS ONE, vol.5, p.8550, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00848866

O. G. Bhalala, L. Pan, V. Sahni, T. L. Mcguire, K. Gruner et al., microRNA-21 regulates astrocytic response following spinal cord injury, J. Neurosci, vol.32, pp.17935-17947, 2012.

O. G. Bhalala, M. Srikanth, and J. A. Kessler, The emerging roles of microRNAs in CNS injuries, Nat. Rev. Neurol, vol.9, pp.328-339, 2013.

A. Bignami and D. Dahl, The astroglial response to stabbing. Immunofluorescence studies with antibodies to astrocyte-specific protein (GFA) in mammalian and submammalian vertebrates, Neuropathol. Appl. Neurobiol, vol.2, pp.130-140, 1976.

M. Bosch and T. Kielian, Hemichannels in neurodegenerative diseases: is there a link to pathology? Front, Cell. Neurosci, vol.8, p.242, 2014.

L. Boussicault, A. S. Herard, N. Calingasan, F. Petit, C. Malgorn et al., Impaired brain energy metabolism in the BACHD mouse model of Huntington's disease: critical role of astrocyte-neuron interactions, J. Cereb. Blood Flow Metab, vol.34, pp.1500-1510, 2014.

J. Bradford, J. Y. Shin, M. Roberts, C. E. Wang, X. J. Li et al., Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.22480-22485, 2009.

G. Bu, Apolipoprotein E and its receptors in Alzheimer's disease: pathways, pathogenesis and therapy, Nat. Rev. Neurosci, vol.10, pp.333-344, 2009.

A. Buffo, C. Rolando, and S. Ceruti, Astrocytes in the damaged brain: molecular and cellular insights into their reactive response and healing potential, Biochem. Pharmacol, vol.79, pp.77-89, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00535828

J. E. Burda and M. V. Sofroniew, Reactive gliosis and the multicellular response to CNS damage and disease, Neuron, vol.81, pp.229-248, 2014.

R. S. Burns, C. C. Chiueh, S. P. Markey, M. H. Ebert, D. M. Jacobowitz et al., A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by Nmethyl-4-phenyl-1,2,3,6-tetrahydropyridine, Proc. Natl. Acad. Sci. U.S.A, vol.80, pp.4546-4550, 1983.

T. G. Bush, N. Puvanachandra, C. H. Horner, A. Polito, T. Ostenfeld et al., Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice, Neuron, vol.23, pp.297-308, 1999.

E. A. Bushong, M. E. Martone, Y. Z. Jones, and M. H. Ellisman, , 2002.

, Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains, J. Neurosci, vol.22, pp.183-192

M. J. Calkins, M. R. Vargas, D. A. Johnson, J. , and J. A. , Astrocytespecific overexpression of Nrf2 protects striatal neurons from mitochondrial complex II inhibition, Toxicol. Sci, vol.115, pp.557-568, 2010.

I. Carrero, M. R. Gonzalo, B. Martin, J. M. Sanz-anquela, J. Arevalo-serrano et al., Oligomers of beta-amyloid protein (Abeta1-42) induce the activation of cyclooxygenase-2 in astrocytes via an interaction with interleukin-1beta, tumour necrosis factor-alpha, and a nuclear factor kappa-B mechanism in the rat brain, Exp. Neurol, vol.236, pp.215-227, 2012.

M. Carrillo-de-sauvage, J. Flament, Y. Bramoulle, L. Ben-haim, M. Guillermier et al., The neuroprotective agent CNTF decreases neuronal metabolites in the rat striatum: an in vivo multimodal magnetic resonance imaging study, J. Cereb. Blood Flow Metab, vol.35, pp.917-921, 2015.
URL : https://hal.archives-ouvertes.fr/cea-02168367

S. F. Carter, M. Scholl, O. Almkvist, A. Wall, H. Engler et al., Evidence for astrocytosis in prodromal Alzheimer disease provided by 11C-deuterium-L-deprenyl: a multitracer PET paradigm combining 11C-Pittsburgh compound B and 18F-FDG, J. Nucl. Med, vol.53, pp.37-46, 2012.

P. Cassina, A. Cassina, M. Pehar, R. Castellanos, M. Gandelman et al., Mitochondrial dysfunction in SOD1G93A-bearing astrocytes promotes motor neuron degeneration: prevention by mitochondrial-targeted antioxidants, J. Neurosci, vol.28, pp.4115-4122, 2008.

G. Charron, E. Doudnikoff, M. H. Canron, Q. Li, C. Vega et al., Astrocytosis in parkinsonism: considering tripartite striatal synapses in physiopathology? Front, Aging Neurosci, vol.6, p.258, 2014.

F. Chauveau, H. Boutin, N. Van-camp, F. Dolle, and B. Tavitian, Nuclear imaging of neuroinflammation: a comprehensive review of [11C]PK11195 challengers, Eur. J. Nucl. Med. Mol. Imaging, vol.35, pp.2304-2319, 2008.

P. C. Chen, M. R. Vargas, A. K. Pani, R. J. Smeyne, D. A. Johnson et al., Nrf2-mediated neuroprotection in the MPTP mouse model of Parkinson's disease: critical role for the astrocyte, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.2933-2938, 2009.

J. K. Choi, A. Dedeoglu, and B. G. Jenkins, Application of MRS to mouse models of neurodegenerative illness, NMR Biomed, vol.20, pp.216-237, 2007.

S. Y. Chou, J. Y. Weng, H. L. Lai, F. Liao, S. H. Sun et al., Expanded-polyglutamine huntingtin protein suppresses the secretion and production of a chemokine (CCL5/RANTES) by astrocytes, J. Neurosci, vol.28, pp.3277-3290, 2008.

Y. H. Chung, K. M. Joo, H. C. Lim, M. H. Cho, D. Kim et al., Immunohistochemical study on the distribution of phosphorylated extracellular signal-regulated kinase (ERK) in the central nervous system of SOD1G93A transgenic mice, Brain Res, vol.1050, pp.203-209, 2005.

S. L. Cole and R. Vassar, The Alzheimer's disease beta-secretase enzyme, BACE1, Mol. Neurodegener, vol.2, p.22, 2007.

E. H. Corder, A. M. Saunders, W. J. Strittmatter, D. E. Schmechel, P. C. Gaskell et al., Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families, Science, vol.261, pp.921-923, 1993.

C. Crosio, C. Valle, A. Casciati, C. Iaccarino, C. et al., Astroglial inhibition of NF-kappaB does not ameliorate disease onset and progression in a mouse model for amyotrophic lateral sclerosis (ALS), PLoS ONE, vol.6, 2011.

M. E. Cudkowicz, S. Titus, M. Kearney, H. Yu, A. Sherman et al., Safety and efficacy of ceftriaxone for amyotrophic lateral sclerosis: a multi-stage, randomised, double-blind, placebo-controlled trial, Lancet Neurol, vol.13, pp.1083-1091, 2014.

J. G. Cui, Y. Y. Li, Y. Zhao, S. Bhattacharjee, and W. J. Lukiw, Differential regulation of interleukin-1 receptor-associated kinase-1 (IRAK-1) and IRAK-2 by microRNA-146a and NF-kappaB in stressed human astroglial cells and in Alzheimer disease, J. Biol. Chem, vol.285, pp.38951-38960, 2010.

Y. Cui, K. Masaki, R. Yamasaki, S. Imamura, S. O. Suzuki et al., Extensive dysregulations of oligodendrocytic and astrocytic connexins are associated with disease progression in an amyotrophic lateral sclerosis mouse model, J. Neuroinflammation, vol.11, p.42, 2014.

D. V. Dabir, M. B. Robinson, E. Swanson, B. Zhang, J. Q. Trojanowski et al., Impaired glutamate transport in a mouse model of tau pathology in astrocytes, J. Neurosci, vol.26, pp.644-654, 2006.

M. D'amelio, V. Cavallucci, S. Middei, C. Marchetti, S. Pacioni et al., Caspase-3 triggers early synaptic dysfunction in a mouse model of Alzheimer's disease, Nat. Neurosci, vol.14, pp.69-76, 2011.

P. Damier, E. C. Hirsch, P. Zhang, Y. Agid, and F. Javoy-agid, Glutathione peroxidase, glial cells and Parkinson's disease, Prog. Neurobiol, vol.52, pp.1-105, 1993.

N. P. Dantuma and L. C. Bott, The ubiquitin-proteasome system in neurodegenerative diseases: precipitating factor, yet part of the solution, Front. Mol. Neurosci, vol.7, p.70, 2014.

D. Davila, K. Thibault, T. A. Fiacco, A. , and C. , Recent molecular approaches to understanding astrocyte function, Front. Cell. Neurosci, vol.7, p.272, 2013.

L. P. De-almeida, C. A. Ross, D. Zala, P. Aebischer, and N. Deglon, Lentiviral-mediated delivery of mutant huntingtin in the striatum of rats induces a selective neuropathology modulated by polyglutamine repeat size, huntingtin expression levels, and protein length, J. Neurosci, vol.22, pp.3473-3483, 2002.

R. A. De-graaf, D. L. Rothman, and K. L. Behar, State of the art direct 13C and indirect 1H-[13C] NMR spectroscopy in vivo. A practical guide, NMR Biomed, vol.24, pp.958-972, 2011.

A. Delekate, M. Fuchtemeier, T. Schumacher, C. Ulbrich, M. Foddis et al., Metabotropic P2Y1 receptor signalling mediates astrocytic hyperactivity in vivo in an Alzheimer's disease mouse model, Nat. Commun, vol.5, p.5422, 2014.

L. Dimou and M. Gotz, Glial cells as progenitors and stem cells: new roles in the healthy and diseased brain, Physiol. Rev, vol.94, pp.709-737, 2014.

J. Doherty, A. E. Sheehan, R. Bradshaw, A. N. Fox, T. Y. Lu et al., PI3K signaling and Stat92E converge to modulate glial responsiveness to axonal injury, PLoS Biol, vol.12, p.1001985, 2014.

V. B. Dorfman, L. Pasquini, M. Riudavets, J. J. Lopez-costa, A. Villegas et al., Differential cerebral deposition of IDE and NEP in sporadic and familial Alzheimer's disease, Neurobiol. Aging, vol.31, pp.1743-1757, 2010.

C. Duyckaerts, M. C. Potier, and B. Delatour, Alzheimer disease models and human neuropathology: similarities and differences, Acta Neuropathol, vol.115, pp.5-38, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00320572

J. G. Emsley and J. D. Macklis, Astroglial heterogeneity closely reflects the neuronal-defined anatomy of the adult murine CNS, Neuron Glia Biol, vol.2, pp.175-186, 2006.

L. F. Eng, R. S. Ghirnikar, and Y. L. Lee, Glial fibrillary acidic protein: GFAP-thirty-one years, Neurochem. Res, vol.25, pp.1439-1451, 1969.

L. F. Eng, J. J. Vanderhaeghen, A. Bignami, and B. Gerstl, An acidic protein isolated from fibrous astrocytes, Brain Res, vol.28, pp.90668-90676, 1971.

C. Escartin and G. Bonvento, Targeted activation of astrocytes: a potential neuroprotective strategy, Mol. Neurobiol, vol.38, pp.231-241, 2008.
URL : https://hal.archives-ouvertes.fr/cea-02168441

C. Escartin, E. Brouillet, P. Gubellini, Y. Trioulier, C. Jacquard et al., Ciliary neurotrophic factor activates astrocytes, redistributes their glutamate transporters GLAST and GLT-1 to raft microdomains, and improves glutamate handling in vivo, J. Neurosci, vol.26, pp.5978-5989, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00088896

C. Escartin, K. Pierre, A. Colin, E. Brouillet, T. Delzescaux et al., Activation of astrocytes by CNTF induces metabolic plasticity and increases resistance to metabolic insults, J. Neurosci, vol.27, pp.7094-7104, 2007.
URL : https://hal.archives-ouvertes.fr/cea-02290623

C. Escartin and N. Rouach, Astroglial networking contributes to neurometabolic coupling, Front. Neuroenergetics, vol.5, p.4, 2013.
URL : https://hal.archives-ouvertes.fr/cea-02142608

M. Faideau, J. Kim, K. Cormier, R. Gilmore, M. Welch et al., In vivo expression of polyglutamine-expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: a correlation with Huntington's disease subjects, Hum. Mol. Genet, vol.19, pp.3053-3067, 2010.

C. Farina, F. Aloisi, and E. Meinl, Astrocytes are active players in cerebral innate immunity, Trends Immunol, vol.28, pp.138-145, 2007.

A. M. Fernandez, S. Fernandez, P. Carrero, M. Garcia-garcia, and I. Torresaleman, Calcineurin in reactive astrocytes plays a key role in the interplay between proinflammatory and anti-inflammatory signals, J. Neurosci, vol.27, pp.8745-8756, 2007.

A. M. Fernandez, S. Jimenez, M. Mecha, D. Davila, C. Guaza et al., Regulation of the phosphatase calcineurin by insulin-like growth factor I unveils a key role of astrocytes in Alzheimer's pathology, Mol. Psychiatry, vol.17, pp.705-718, 2012.

L. Ferraiuolo, A. Higginbottom, P. R. Heath, S. Barber, D. Greenald et al., Dysregulation of astrocyte-motoneuron cross-talk in mutant superoxide dismutase 1-related amyotrophic lateral sclerosis, Brain, vol.134, pp.2627-2641, 2011.

I. Ferrer, R. Blanco, M. Carmona, and B. Puig, Phosphorylated mitogenactivated protein kinase (MAPK/ERK-P), protein kinase of 38 kDa (p38-P), stress-activated protein kinase (SAPK/JNK-P), and calcium/calmodulindependent kinase II (CaM kinase II) are differentially expressed in tau deposits in neurons and glial cells in tauopathies, J. Neural Transm, vol.108, pp.1397-1415, 2001.

I. Ferrer, E. Marti, E. Lopez, and A. Tortosa, NF-kB immunoreactivity is observed in association with beta A4 diffuse plaques in patients with Alzheimer's disease, Neuropathol. Appl. Neurobiol, vol.24, pp.271-277, 1998.

L. C. Foo, N. J. Allen, E. A. Bushong, P. B. Ventura, W. S. Chung et al., Development of a method for the purification and culture of rodent astrocytes, Neuron, vol.71, pp.799-811, 2011.

L. S. Forno, L. E. Delanney, I. Irwin, D. Di-monte, and J. W. Langston, Astrocytes and Parkinson's disease. Prog, Brain Res, vol.94, pp.429-436, 1992.

A. E. Frakes, L. Ferraiuolo, A. M. Haidet-phillips, L. Schmelzer, L. Braun et al., Microglia induce motor neuron death via the classical NF-kappaB pathway in amyotrophic lateral sclerosis, Neuron, vol.81, pp.1009-1023, 2014.

M. R. Freeman, Drosophila central nervous system Glia, Cold Spring Harb. Perspect Biol, 2015.

H. Fukuyama, M. Ogawa, H. Yamauchi, S. Yamaguchi, J. Kimura et al., Altered cerebral energy metabolism in Alzheimer's disease: a PET study, J. Nucl. Med, vol.35, pp.1-6, 1994.

H. Funato, M. Yoshimura, T. Yamazaki, T. C. Saido, Y. Ito et al., Astrocytes containing amyloid beta-protein (Abeta)-positive granules are associated with Abeta40-positive diffuse plaques in the aged human brain, Am. J. Pathol, vol.152, pp.983-992, 1998.

J. L. Furman and C. M. Norris, Calcineurin and glial signaling: neuroinflammation and beyond, J. Neuroinflammation, vol.11, p.158, 2014.
DOI : 10.1186/s12974-014-0158-7

URL : https://jneuroinflammation.biomedcentral.com/track/pdf/10.1186/s12974-014-0158-7

J. L. Furman, D. M. Sama, J. C. Gant, T. L. Beckett, M. P. Murphy et al., Targeting astrocytes ameliorates neurologic changes in a mouse model of Alzheimer's disease, J. Neurosci, vol.32, pp.16129-16140, 2012.

L. Gan, M. R. Vargas, D. A. Johnson, J. , and J. A. , Astrocyte-specific overexpression of Nrf2 delays motor pathology and synuclein aggregation throughout the CNS in the alpha-synuclein mutant (A53T) mouse model, J. Neurosci, vol.32, pp.17775-17787, 2012.

C. Genoud, C. Quairiaux, P. Steiner, H. Hirling, E. Welker et al., Plasticity of astrocytic coverage and glutamate transporter expression in adult mouse cortex, PLoS Biol, vol.4, p.343, 2006.

S. Ghavami, S. Shojaei, B. Yeganeh, S. R. Ande, J. R. Jangamreddy et al., Autophagy and apoptosis dysfunction in neurodegenerative disorders, Prog. Neurobiol, vol.112, pp.24-49, 2014.
DOI : 10.1016/j.pneurobio.2013.10.004

URL : https://doi.org/10.1016/j.pneurobio.2013.10.004

C. Giaume, A. Koulakoff, L. Roux, D. Holcman, and N. Rouach, Astroglial networks: a step further in neuroglial and gliovascular interactions, Nat. Rev. Neurosci, vol.11, pp.87-99, 2010.

Y. H. Gong, A. S. Parsadanian, A. Andreeva, W. D. Snider, and J. L. Elliott, Restricted expression of G86R Cu/Zn superoxide dismutase in astrocytes results in astrocytosis but does not cause motoneuron degeneration, J. Neurosci, vol.20, pp.660-665, 2000.

J. Gotz and L. M. Ittner, Animal models of Alzheimer's disease and frontotemporal dementia, Nat. Rev. Neurosci, vol.9, pp.532-544, 2008.

S. T. Grafton, J. C. Mazziotta, J. J. Pahl, P. St-george-hyslop, J. L. Haines et al., Serial changes of cerebral glucose metabolism and caudate size in persons at risk for Huntington's disease, Arch. Neurol, vol.49, pp.1161-1167, 1992.

M. Gray, D. I. Shirasaki, C. Cepeda, V. M. Andre, B. Wilburn et al., Full-length human mutant huntingtin with a stable polyglutamine repeat can elicit progressive and selective neuropathogenesis in BACHD mice, J. Neurosci, vol.28, pp.6182-6195, 2008.

S. I. Grivennikov, K. , and M. , Dangerous liaisons: STAT3 and NFkappaB collaboration and crosstalk in cancer, Cytokine Growth Factor Rev, vol.21, pp.11-19, 2010.
DOI : 10.1016/j.cytogfr.2009.11.005

URL : http://europepmc.org/articles/pmc2834864?pdf=render

X. L. Gu, C. X. Long, L. Sun, C. Xie, X. Lin et al., Astrocytic expression of Parkinson's disease-related A53T alpha-synuclein causes neurodegeneration in mice, Mol. Brain, vol.3, p.12, 2010.

M. E. Gurney, H. Pu, A. Y. Chiu, M. C. Dal-canto, C. Y. Polchow et al., Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation, Science, vol.264, pp.1772-1775, 1994.
DOI : 10.1126/science.8209258

A. M. Haidet-phillips, M. E. Hester, C. J. Miranda, K. Meyer, L. Braun et al., Astrocytes from familial and sporadic ALS patients are toxic to motor neurons, Nat. Biotechnol, vol.29, pp.824-828, 2011.

E. D. Hall, J. A. Oostveen, and M. E. Gurney, Relationship of microglial and astrocytic activation to disease onset and progression in a transgenic model of familial ALS, Glia, vol.23, pp.249-256, 1998.

A. Halle, V. Hornung, G. C. Petzold, C. R. Stewart, B. G. Monks et al., The NALP3 inflammasome is involved in the innate immune response to amyloid-beta, Nat. Immunol, vol.9, pp.857-865, 2008.

U. K. Hanisch and H. Kettenmann, Microglia: active sensor and versatile effector cells in the normal and pathologic brain, Nat. Neurosci, vol.10, pp.1387-1394, 2007.

B. Hassel, S. Tessler, R. L. Faull, and P. C. Emson, Glutamate uptake is reduced in prefrontal cortex in Huntington's disease, Neurochem. Res, vol.33, pp.232-237, 2008.

F. He, W. Ge, K. Martinowich, S. Becker-catania, V. Coskun et al., A positive autoregulatory loop of Jak-STAT signaling controls the onset of astrogliogenesis, Nat. Neurosci, vol.8, pp.616-625, 2005.

R. E. Heikkila, A. Hess, and R. C. Duvoisin, Dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine in mice, Science, vol.224, pp.1451-1453, 1984.

M. T. Heneka, M. P. Kummer, and E. Latz, Innate immune activation in neurodegenerative disease, Nat. Rev. Immunol, vol.14, pp.463-477, 2014.

M. T. Heneka, M. Sastre, L. Dumitrescu-ozimek, I. Dewachter, J. Walter et al., Focal glial activation coincides with increased BACE1 activation and precedes amyloid plaque deposition in APP[V717I] transgenic mice, J. Neuroinflammation, vol.2, p.22, 2005.

K. Hensley, R. A. Floyd, N. Y. Zheng, R. Nael, K. A. Robinson et al., p38 kinase is activated in the Alzheimer's disease brain, J. Neurochem, vol.72, pp.2053-2058, 1999.

J. E. Herrmann, T. Imura, B. Song, J. Qi, Y. Ao et al., STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury, J. Neurosci, vol.28, pp.7231-7243, 2008.

E. C. Hirsch and S. Hunot, Neuroinflammation in Parkinson's disease: a target for neuroprotection?, Lancet Neurol, vol.8, pp.70062-70068, 2009.

B. Hoesel and J. A. Schmid, The complexity of NF-kappaB signaling in inflammation and cancer, Mol. Cancer, vol.12, p.86, 2013.

P. G. Hogan, L. Chen, J. Nardone, and A. Rao, Transcriptional regulation by calcium, calcineurin, and NFAT, Genes Dev, vol.17, pp.2205-2232, 2003.

D. S. Howland, J. Liu, Y. She, B. Goad, N. J. Maragakis et al., Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS), Proc. Natl. Acad. Sci. U.S.A, vol.99, pp.1604-1609, 2002.

H. Y. Hsiao, Y. C. Chen, H. M. Chen, P. H. Tu, and Y. Chern, A critical role of astrocyte-mediated nuclear factor-kappaB-dependent inflammation in Huntington's disease, Hum. Mol. Genet, vol.22, pp.1826-1842, 2013.

K. Hsiao, P. Chapman, S. Nilsen, C. Eckman, Y. Harigaya et al., Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice, Science, vol.274, pp.99-102, 1996.

Y. Huang and L. Mucke, Alzheimer mechanisms and therapeutic strategies, Cell, vol.148, pp.1204-1222, 2012.

S. Hunot, B. Brugg, D. Ricard, P. P. Michel, M. P. Muriel et al., Nuclear translocation of NF-kappaB is increased in dopaminergic neurons of patients with parkinson disease, Proc. Natl. Acad. Sci. U.S.A, vol.94, pp.7531-7536, 1997.

A. P. Hutchins, D. Diez, Y. Takahashi, S. Ahmad, R. Jauch et al., Distinct transcriptional regulatory modules underlie STAT3 s cell typeindependent and cell type-specific functions, Nucleic Acids Res, vol.41, pp.2155-2170, 2013.

E. R. Hutchison, E. M. Kawamoto, D. D. Taub, A. Lal, K. Abdelmohsen et al., Evidence for miR-181 involvement in neuroinflammatory responses of astrocytes, Glia, vol.61, pp.1018-1028, 2013.

N. Jain, T. Zhang, S. L. Fong, C. P. Lim, and X. Cao, Repression of Stat3 activity by activation of mitogen-activated protein kinase (MAPK), Oncogene, vol.17, pp.3157-3167, 1998.

J. L. Jankowsky, D. J. Fadale, J. Anderson, G. M. Xu, V. Gonzales et al., Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase, Hum. Mol. Genet, vol.13, pp.159-170, 2004.

A. H. Jansen, E. A. Reits, and E. M. Hol, The ubiquitin proteasome system in glia and its role in neurodegenerative diseases, Front. Mol. Neurosci, vol.7, p.73, 2014.

K. L. Jeffrey, M. Camps, C. Rommel, and C. R. Mackay, Targeting dualspecificity phosphatases: manipulating MAP kinase signalling and immune responses, Nat. Rev. Drug Discov, vol.6, pp.391-403, 2007.

S. Jo, O. Yarishkin, Y. J. Hwang, Y. E. Chun, M. Park et al., GABA from reactive astrocytes impairs memory in mouse models of Alzheimer's disease, Nat. Med, vol.20, pp.886-896, 2014.

A. Johansson, H. Engler, G. Blomquist, B. Scott, A. Wall et al., Evidence for astrocytosis in ALS demonstrated by [11C](L)-deprenyl-D2 PET, J. Neurol. Sci, vol.255, pp.17-22, 2007.

E. S. Jung, K. An, H. S. Hong, J. H. Kim, M. et al., Astrocyteoriginated ATP protects Abeta(1-42)-induced impairment of synaptic plasticity, J. Neurosci, vol.32, pp.3081-3087, 2012.

M. Kaiser, I. Maletzki, S. Hulsmann, B. Holtmann, W. Schulz-schaeffer et al., Progressive loss of a glial potassium channel (KCNJ10) in the spinal cord of the SOD1 (G93A) transgenic mouse model of amyotrophic lateral sclerosis, J. Neurochem, vol.99, pp.900-912, 2006.

B. Kaltschmidt, M. Uherek, B. Volk, P. A. Baeuerle, and C. Kaltschmidt, Transcription factor NF-kappaB is activated in primary neurons by amyloid beta peptides and in neurons surrounding early plaques from patients with Alzheimer disease, Proc. Natl. Acad. Sci. U.S.A, vol.94, pp.2642-2647, 1997.

B. Kaltschmidt, D. Widera, and C. Kaltschmidt, Signaling via NFkappaB in the nervous system, Biochim. Biophys. Acta, vol.1745, pp.287-299, 2005.

B. Kaminska, A. Gozdz, M. Zawadzka, A. Ellert-miklaszewska, and M. Lipko, MAPK signal transduction underlying brain inflammation and gliosis as therapeutic target, Anat. Rec, vol.292, pp.1902-1913, 2009.

W. Kamphuis, L. Kooijman, M. Orre, O. Stassen, M. Pekny et al., GFAP and vimentin deficiency alters gene expression in astrocytes and microglia in wild-type mice and changes the transcriptional response of reactive glia in mouse model for Alzheimer's disease, Glia, vol.63, pp.1036-1056, 2015.

W. Kamphuis, M. Orre, L. Kooijman, M. Dahmen, and E. M. Hol, Differential cell proliferation in the cortex of the APPswePS1dE9 Alzheimer's disease mouse model, Glia, vol.60, pp.615-629, 2012.

W. Kang, F. Balordi, N. Su, L. Chen, G. Fishell et al., Astrocyte activation is suppressed in both normal and injured brain by FGF signaling, Proc. Natl. Acad. Sci. U.S.A, vol.111, 2014.

R. Kanski, M. E. Van-strien, P. Van-tijn, and E. M. Hol, A star is born: new insights into the mechanism of astrogenesis, Cell. Mol. Life Sci, vol.71, pp.433-447, 2014.

H. Kawamata, S. K. Ng, N. Diaz, S. Burstein, L. Morel et al., Abnormal intracellular calcium signaling and SNARE-dependent exocytosis contributes to SOD1G93A astrocyte-mediated toxicity in amyotrophic lateral sclerosis, J. Neurosci, vol.34, pp.2331-2348, 2014.

N. J. Kershaw, A. Laktyushin, N. A. Nicola, and J. J. Babon, Reconstruction of an active SOCS3-based E3 ubiquitin ligase complex in vitro: identification of the active components and JAK2 and gp130 as substrates, Growth Factors, vol.32, pp.1-10, 2014.

H. Kettenmann and B. R. Ransom, The concept of neuroglia: a historical perspective, pp.1-16, 2004.

A. Khoshnan, J. Ko, E. E. Watkin, L. A. Paige, P. H. Reinhart et al., Activation of the IkappaB kinase complex and nuclear factor-kappaB contributes to mutant huntingtin neurotoxicity, J. Neurosci, vol.24, pp.7999-8008, 2004.

K. A. Kigerl, . De-rivero, J. P. Vaccari, W. D. Dietrich, P. G. Popovich et al., Pattern recognition receptors and central nervous system repair, Exp. Neurol, vol.258, pp.5-16, 2014.

M. Kohutnicka, E. Lewandowska, I. Kurkowska-jastrzebska, A. Czlonkowski, and A. Czlonkowska, Microglial and astrocytic involvement in a murine model of Parkinson's disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), Immunopharmacology, vol.39, pp.167-180, 1998.

M. Koistinaho, M. I. Kettunen, G. Goldsteins, R. Keinanen, A. Salminen et al., Beta-amyloid precursor protein transgenic mice that harbor diffuse A beta deposits but do not form plaques show increased ischemic vulnerability: role of inflammation, Proc. Natl. Acad. Sci. U.S.A, vol.99, pp.1610-1615, 2002.

M. Koistinaho, S. Lin, X. Wu, M. Esterman, D. Koger et al., Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-beta peptides, Nat. Med, vol.10, pp.719-726, 2004.

A. W. Kraft, X. Hu, H. Yoon, P. Yan, Q. Xiao et al., Attenuating astrocyte activation accelerates plaque pathogenesis in APP/PS1 mice, FASEB J, vol.27, pp.187-198, 2013.

R. Krencik and E. M. Ullian, A cellular star atlas: using astrocytes from human pluripotent stem cells for disease studies, Front. Cell. Neurosci, vol.7, p.25, 2013.

K. V. Kuchibhotla, C. R. Lattarulo, B. T. Hyman, and B. J. Bacskai, Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice, Science, vol.323, pp.1211-1215, 2009.

Y. Kuge, H. Kawashima, K. Minematsu, Y. Hasegawa, T. Yamaguchi et al., Octanoate as a PET tracer for studying ischemic stroke: evaluation in a canine model of thromboembolic stroke with positron emission tomography, Biol. Pharm. Bull, vol.23, pp.984-988, 2000.

C. M. Lauderback, J. M. Hackett, F. F. Huang, J. N. Keller, L. I. Szweda et al., The glial glutamate transporter, GLT-1, is oxidatively modified by 4-hydroxy-2-nonenal in the Alzheimer's disease brain: the role of Abeta1-42, J. Neurochem, vol.78, pp.413-416, 2001.

S. Lavisse, M. Guillermier, A. S. Herard, F. Petit, M. Delahaye et al., Reactive Astrocytes Overexpress TSPO and are detected by TSPO positron emission tomography imaging, J. Neurosci, vol.32, pp.10809-10818, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02110993

L. Prince, G. Delaere, P. Fages, C. Lefrancois, T. Touret et al., Glutamine synthetase (GS) expression is reduced in senile dementia of the Alzheimer type, Neurochem. Res, vol.20, pp.859-862, 1995.

V. Lebon, K. F. Petersen, G. W. Cline, J. Shen, G. F. Mason et al., Astroglial contribution to brain energy metabolism in humans revealed by 13C nuclear magnetic resonance spectroscopy: elucidation of the dominant pathway for neurotransmitter glutamate repletion and measurement of astrocytic oxidative metabolism, J. Neurosci, vol.22, pp.1523-1531, 2002.

W. Lee, R. C. Reyes, M. K. Gottipati, K. Lewis, M. Lesort et al., Enhanced Ca(2+)-dependent glutamate release from astrocytes of the BACHD Huntington's disease mouse model, Neurobiol. Dis, vol.58, pp.192-199, 2013.

V. Leoni and C. Caccia, Study of cholesterol metabolism in Huntington's disease, Biochem. Biophys. Res. Commun, vol.446, pp.697-701, 2014.

A. C. Lepore, C. Dejea, J. Carmen, B. Rauck, D. A. Kerr et al., Selective ablation of proliferating astrocytes does not affect disease outcome in either acute or chronic models of motor neuron degeneration, Exp. Neurol, vol.211, pp.423-432, 2008.

A. C. Lepore, B. Rauck, C. Dejea, A. C. Pardo, M. S. Rao et al., Focal transplantation-based astrocyte replacement is neuroprotective in a model of motor neuron disease, Nat. Neurosci, vol.11, pp.1294-1301, 2008.

D. E. Levy and J. E. Darnell, Stats: transcriptional control and biological impact, Nat. Rev. Mol. Cell Biol, vol.3, pp.651-662, 2002.

Y. Y. Li, J. G. Cui, J. M. Hill, S. Bhattacharjee, Y. Zhao et al., Increased expression of miRNA-146a in Alzheimer's disease transgenic mouse models, Neurosci. Lett, vol.487, pp.94-98, 2011.

H. Lian, L. Yang, A. Cole, L. Sun, A. C. Chiang et al., NFkappaB-Activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer's Disease, Neuron, vol.85, pp.101-115, 2015.

C. M. Liberto, P. J. Albrecht, L. M. Herx, V. W. Yong, and S. W. Levison, Pro-regenerative properties of cytokine-activated astrocytes, J. Neurochem, vol.89, pp.1092-1100, 2004.

J. C. Lievens, T. Rival, M. Iche, H. Chneiweiss, and S. Birman, Expanded polyglutamine peptides disrupt EGF receptor signaling and glutamate transporter expression in Drosophila, Hum. Mol. Genet, vol.14, pp.713-724, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00118469

J. C. Lievens, B. Woodman, A. Mahal, O. Spasic-boscovic, D. Samuel et al., Impaired glutamate uptake in the R6 Huntington's disease transgenic mice, Neurobiol. Dis, vol.8, pp.807-821, 2001.

D. Lim, A. Iyer, V. Ronco, A. A. Grolla, P. L. Canonico et al., Amyloid beta deregulates astroglial mGluR5-mediated calcium signaling via calcineurin and Nf-kB, Glia, vol.61, pp.1134-1145, 2013.
DOI : 10.1002/glia.22502

M. T. Lin and M. F. Beal, Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases, Nature, vol.443, pp.787-795, 2006.

K. M. Lucin and T. Wyss-coray, Immune activation in brain aging and neurodegeneration: too much or too little?, Neuron, vol.64, pp.110-122, 2009.
DOI : 10.1016/j.neuron.2009.08.039

URL : https://doi.org/10.1016/j.neuron.2009.08.039

L. Mangiarini, K. Sathasivam, A. Mahal, R. Mott, M. Seller et al., Instability of highly expanded CAG repeats in mice transgenic for the Huntington's disease mutation, Nat. Genet, vol.15, pp.297-197, 1997.

N. J. Maragakis and J. D. Rothstein, Glutamate transporters: animal models to neurologic disease, Neurobiol. Dis, vol.15, pp.461-473, 2004.
DOI : 10.1016/j.nbd.2003.12.007

N. J. Maragakis and J. D. Rothstein, Mechanisms of Disease: astrocytes in neurodegenerative disease, Nat. Clin. Pract. Neurol, vol.2, pp.679-689, 2006.

E. Marcora and M. B. Kennedy, The Huntington's disease mutation impairs Huntingtin's role in the transport of NF-kappaB from the synapse to the nucleus, Hum. Mol. Genet, vol.19, pp.4373-4384, 2010.

J. Margulis and S. Finkbeiner, Proteostasis in striatal cells and selective neurodegeneration in Huntington's disease. Front, Cell. Neurosci, vol.8, p.218, 2014.
DOI : 10.3389/fncel.2014.00218

URL : https://www.frontiersin.org/articles/10.3389/fncel.2014.00218/pdf

J. Marik, A. Ogasawara, B. Martin-mcnulty, J. Ross, J. E. Flores et al., PET of glial metabolism using 2-18F-fluoroacetate, J. Nucl. Med, vol.50, pp.982-990, 2009.
DOI : 10.2967/jnumed.108.057356

URL : http://jnm.snmjournals.org/content/50/6/982.full.pdf

F. Martorana, L. Brambilla, C. F. Valori, C. Bergamaschi, C. Roncoroni et al., The BH4 domain of Bcl-X(L) rescues astrocyte degeneration in amyotrophic lateral sclerosis by modulating intracellular calcium signals, Hum. Mol. Genet, vol.21, pp.826-840, 2012.

E. Masliah, M. Alford, R. Deteresa, M. Mallory, and L. Hansen, Deficient glutamate transport is associated with neurodegeneration in Alzheimer's disease, Ann. Neurol, vol.40, pp.759-766, 1996.
DOI : 10.1002/ana.410400512

E. Masliah, M. Alford, M. Mallory, E. Rockenstein, D. Moechars et al., Abnormal glutamate transport function in mutant amyloid precursor protein transgenic mice, Exp. Neurol, vol.163, pp.381-387, 2000.
DOI : 10.1006/exnr.2000.7386

M. P. Mattson and M. K. Meffert, Roles for NF-kappaB in nerve cell survival, plasticity, and disease, Cell Death Differ, vol.13, pp.852-860, 2006.

V. Matyash and H. Kettenmann, Heterogeneity in astrocyte morphology and physiology, Brain Res. Rev, vol.63, 2010.
DOI : 10.1016/j.brainresrev.2009.12.001

K. D. Mccarthy, D. Vellis, and J. , Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue, J. Cell Biol, vol.85, pp.890-902, 1980.

X. Mei, P. Ezan, C. Giaume, and A. Koulakoff, Astroglial connexin immunoreactivity is specifically altered at beta-amyloid plaques in betaamyloid precursor protein/presenilin1 mice, Neuroscience, vol.171, pp.92-105, 2010.
DOI : 10.1016/j.neuroscience.2010.08.001

L. B. Menalled, A. E. Kudwa, S. Miller, J. Fitzpatrick, J. Watson-johnson et al., Comprehensive behavioral and molecular characterization of a new knock-in mouse model of Huntington's disease: zQ175, PLoS ONE, vol.7, p.49838, 2012.

L. B. Menalled, J. D. Sison, I. Dragatsis, S. Zeitlin, and M. F. Chesselet, Time course of early motor and neuropathological anomalies in a knock-in mouse model of Huntington's disease with 140 CAG repeats, J. Comp. Neurol, vol.465, pp.11-26, 2003.

A. Migheli, R. Piva, C. Atzori, D. Troost, and D. Schiffer, c-Jun, JNK/SAPK kinases and transcription factor NF-kappa B are selectively activated in astrocytes, but not motor neurons, 1997.

, J. Neuropathol. Exp. Neurol, vol.56, pp.1314-1322

B. R. Miller, J. L. Dorner, M. Shou, Y. Sari, S. J. Barton et al., Up-regulation of GLT1 expression increases glutamate uptake and attenuates the Huntington's disease phenotype in the R6/2 mouse, Neuroscience, vol.153, pp.329-337, 2008.

J. Minkiewicz, . De-rivero, J. P. Vaccari, and R. W. Keane, Human astrocytes express a novel NLRP2 inflammasome, Glia, vol.61, pp.1113-1121, 2013.
DOI : 10.1002/glia.22499

A. V. Molofsky, R. Krencik, E. M. Ullian, H. H. Tsai, B. Deneen et al., Astrocytes and disease: a neurodevelopmental perspective, Genes Dev, vol.26, pp.891-907, 2012.
DOI : 10.1101/gad.188326.112

URL : http://genesdev.cshlp.org/content/26/9/891.full.pdf

E. Motori, J. Puyal, N. Toni, A. Ghanem, C. Angeloni et al., Inflammation-induced alteration of astrocyte mitochondrial dynamics requires autophagy for mitochondrial network maintenance, Cell Metab, vol.18, pp.844-859, 2013.

H. W. Muller, U. Junghans, and J. Kappler, Astroglial neurotrophic and neurite-promoting factors, Pharmacol. Ther, vol.65, pp.47-54, 1995.

R. G. Nagele, M. R. D'andrea, H. Lee, V. Venkataraman, and H. Y. Wang, Astrocytes accumulate A beta 42 and give rise to astrocytic amyloid plaques in Alzheimer disease brains, Brain Res, vol.971, pp.2361-2369, 2003.

J. I. Nagy, W. Li, E. L. Hertzberg, and C. A. Marotta, Elevated connexin43 immunoreactivity at sites of amyloid plaques in Alzheimer's disease, Brain Res, vol.717, pp.173-178, 1996.

L. H. Nilsen, C. Rae, L. M. Ittner, J. Gotz, and U. Sonnewald, Glutamate metabolism is impaired in transgenic mice with tau hyperphosphorylation, J. Cereb. Blood Flow Metab, vol.33, pp.684-691, 2013.
DOI : 10.1038/jcbfm.2012.212

URL : http://europepmc.org/articles/pmc3652703?pdf=render

L. H. Nilsen, M. P. Witter, and U. Sonnewald, Neuronal and astrocytic metabolism in a transgenic rat model of Alzheimer's disease, J. Cereb. Blood Flow Metab, vol.34, pp.906-914, 2014.

C. M. Norris, I. Kadish, E. M. Blalock, K. C. Chen, V. Thibault et al., Calcineurin triggers reactive/inflammatory processes in astrocytes and is upregulated in aging and Alzheimer's models, J. Neurosci, vol.25, pp.4649-4658, 2005.
DOI : 10.1523/jneurosci.0365-05.2005

URL : http://www.jneurosci.org/content/25/18/4649.full.pdf

N. A. Oberheim, G. F. Tian, X. Han, W. Peng, T. Takano et al., Loss of astrocytic domain organization in the epileptic brain, J. Neurosci, vol.28, pp.3264-3276, 2008.

E. R. O'brien, C. Howarth, and N. R. Sibson, The role of astrocytes in CNS tumors: pre-clinical models and novel imaging approaches, Front. Cell Neurosci, vol.7, p.40, 2013.

S. Oddo, A. Caccamo, J. D. Shepherd, M. P. Murphy, T. E. Golde et al., Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Abeta and synaptic dysfunction, Neuron, vol.39, pp.409-421, 2003.

A. Oeckinghaus, M. S. Hayden, and S. Ghosh, Crosstalk in NF-kappaB signaling pathways, Nat. Immunol, vol.12, pp.695-708, 2011.
DOI : 10.1038/ni.2065

S. Okada, M. Nakamura, H. Katoh, T. Miyao, T. Shimazaki et al., Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury, Nat. Med, vol.12, pp.829-834, 2006.

M. Olabarria, H. N. Noristani, A. Verkhratsky, and J. J. Rodriguez, Concomitant astroglial atrophy and astrogliosis in a triple transgenic animal model of Alzheimer's disease, Glia, vol.58, pp.831-838, 2010.

M. Olabarria, H. N. Noristani, A. Verkhratsky, and J. J. Rodriguez, Agedependent decrease in glutamine synthetase expression in the hippocampal astroglia of the triple transgenic Alzheimer's disease mouse model: mechanism for deficient glutamatergic transmission?, Mol. Neurodegener, vol.6, p.55, 2011.

S. H. Oliet, R. Piet, and D. A. Poulain, Control of glutamate clearance and synaptic efficacy by glial coverage of neurons, Science, vol.292, pp.923-926, 2001.
URL : https://hal.archives-ouvertes.fr/inserm-00000059

J. A. Orellana, K. F. Shoji, V. Abudara, P. Ezan, E. Amigou et al., Amyloid beta-induced death in neurons involves glial and neuronal hemichannels, J. Neurosci, vol.31, pp.4962-4977, 2011.

M. Orre, W. Kamphuis, S. Dooves, L. Kooijman, E. T. Chan et al., Reactive glia show increased immunoproteasome activity in Alzheimer's disease, Brain, vol.136, pp.1415-1431, 2013.

M. Orre, W. Kamphuis, L. M. Osborn, A. H. Jansen, L. Kooijman et al., Isolation of glia from Alzheimer's mice reveals inflammation and dysfunction, Neurobiol. Aging, vol.35, pp.2746-2760, 2014.

P. I. Ortinski, J. Dong, A. Mungenast, C. Yue, H. Takano et al., Selective induction of astrocytic gliosis generates deficits in neuronal inhibition, Nat. Neurosci, vol.13, pp.584-591, 2010.

J. B. Owen, F. Di-domenico, R. Sultana, M. Perluigi, C. Cini et al., Proteomics-determined differences in the concanavalin-Afractionated proteome of hippocampus and inferior parietal lobule in subjects with Alzheimer's disease and mild cognitive impairment: implications for progression of AD, J. Proteome Res, vol.8, pp.471-482, 2009.

A. Panatier, M. Arizono, and U. V. Nagerl, Dissecting tripartite synapses with STED microscopy, Philos. Trans. R. Soc. Lond. B Biol. Sci, vol.369, 2014.

M. M. Pearce, E. J. Spartz, W. Hong, L. Luo, and R. R. Kopito, Prionlike transmission of neuronal huntingtin aggregates to phagocytic glia in the Drosophila brain, Nat. Commun, vol.6, p.6768, 2015.

M. Pehar, P. Cassina, M. R. Vargas, R. Castellanos, L. Viera et al., Astrocytic production of nerve growth factor in motor neuron apoptosis: implications for amyotrophic lateral sclerosis, J. Neurochem, vol.89, pp.464-473, 2004.

L. Pellerin and P. J. Magistretti, Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization, Proc. Natl. Acad. Sci. U.S.A, vol.91, pp.10625-10629, 1994.

F. W. Pfrieger and N. Ungerer, Cholesterol metabolism in neurons and astrocytes, Prog. Lipid Res, vol.50, pp.357-371, 2011.

T. Philips and W. Robberecht, Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease, Lancet Neurol, vol.10, pp.253-263, 2011.

T. M. Pirttimaki, N. K. Codadu, A. Awni, P. Pratik, D. A. Nagel et al., alpha7 Nicotinic receptor-mediated astrocytic gliotransmitter release: Abeta effects in a preclinical Alzheimer's mouse model, PLoS ONE, vol.8, 2013.

S. Pons and I. Torres-aleman, Insulin-like growth factor-I stimulates dephosphorylation of ikappa B through the serine phosphatase calcineurin (protein phosphatase 2B), J. Biol. Chem, vol.275, pp.38620-38625, 2000.

D. Popovic, D. Vucic, and I. Dikic, Ubiquitination in disease pathogenesis and treatment, Nat. Med, vol.20, pp.1242-1253, 2014.

T. B. Puschmann, C. Zanden, Y. De-pablo, F. Kirchhoff, M. Pekna et al., Bioactive 3D cell culture system minimizes cellular stress and maintains the in vivo-like morphological complexity of astroglial cells, Glia, vol.61, pp.432-440, 2013.

K. Puttaparthi and J. L. Elliott, Non-neuronal induction of immunoproteasome subunits in an ALS model: possible mediation by cytokines, Exp. Neurol, vol.196, pp.441-451, 2005.

K. Puttaparthi, L. Van-kaer, and J. L. Elliott, Assessing the role of immunoproteasomes in a mouse model of familial ALS, Exp. Neurol, vol.206, pp.53-58, 2007.

H. W. Querfurth and F. M. Laferla, Alzheimer's disease, N. Engl. J. Med, vol.362, pp.329-344, 2010.

R. Radde, T. Bolmont, S. A. Kaeser, J. Coomaraswamy, D. Lindau et al., Abeta42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology, EMBO Rep, vol.7, pp.940-946, 2006.

G. V. Rebec, Dysregulation of corticostriatal ascorbate release and glutamate uptake in transgenic models of Huntington's disease, Antioxid. Redox Signal, vol.19, pp.2115-2128, 2013.

G. V. Rebec, S. J. Barton, and M. D. Ennis, Dysregulation of ascorbate release in the striatum of behaving mice expressing the Huntington's disease gene, J Neurosci, vol.22, p.202, 2002.

W. Robberecht and T. Philips, The changing scene of amyotrophic lateral sclerosis, Nat. Rev. Neurosci, vol.14, pp.248-264, 2013.

S. Robel, S. C. Buckingham, J. L. Boni, S. L. Campbell, N. C. Danbolt et al., Reactive astrogliosis causes the development of spontaneous seizures, J. Neurosci, vol.35, pp.3330-3345, 2015.

S. Robel, T. Mori, S. Zoubaa, J. Schlegel, S. Sirko et al., Conditional deletion of beta1-integrin in astroglia causes partial reactive gliosis, Glia, vol.57, pp.1630-1647, 2009.

F. Rojas, N. Cortes, S. Abarzua, A. Dyrda, and B. Van-zundert, Astrocytes expressing mutant SOD1 and TDP43 trigger motoneuron death that is mediated via sodium channels and nitroxidative stress, Front. Cell. Neurosci, vol.8, p.24, 2014.

B. Ross, A. Lin, K. Harris, P. Bhattacharya, and B. Schweinsburg, Clinical experience with 13C MRS in vivo, NMR Biomed, vol.16, pp.358-369, 2003.

C. A. Ross and M. A. Poirier, Protein aggregation and neurodegenerative disease, Nat. Med, vol.10, pp.10-17, 2004.

D. Rossi, L. Brambilla, C. F. Valori, A. Crugnola, G. Giaccone et al., Defective tumor necrosis factor-alpha-dependent control of astrocyte glutamate release in a transgenic mouse model of Alzheimer disease, J. Biol. Chem, vol.280, pp.42088-42096, 2005.

J. D. Rothstein, L. J. Martin, and R. W. Kuncl, Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis, N. Engl. J. Med, vol.326, pp.1464-1468, 1992.

J. D. Rothstein, S. Patel, M. R. Regan, C. Haenggeli, Y. H. Huang et al., Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression, Nature, vol.433, pp.73-77, 2005.

J. D. Rothstein, M. Van-kammen, A. I. Levey, L. J. Martin, and R. W. Kuncl, Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis, Ann. Neurol, vol.38, pp.73-84, 1995.

N. Rouach, A. Koulakoff, V. Abudara, K. Willecke, and C. Giaume, Astroglial metabolic networks sustain hippocampal synaptic transmission, Science, vol.322, pp.1551-1555, 2008.

M. Rufer, S. B. Wirth, A. Hofer, R. Dermietzel, A. Pastor et al., Regulation of connexin-43, GFAP, and FGF-2 is not accompanied by changes in astroglial coupling in MPTP-lesioned, FGF-2-treated parkinsonian mice, J. Neurosci. Res, vol.46, pp.606-617, 1996.

H. Sancheti, I. Patil, K. Kanamori, R. Diaz-brinton, W. Zhang et al., Hypermetabolic state in the 7-month-old triple transgenic mouse model of Alzheimer's disease and the effect of lipoic acid: a 13C-NMR study, J. Cereb. Blood Flow Metab, vol.34, pp.1749-1760, 2014.

M. Santello and A. Volterra, TNFalpha in synaptic function: switching gears, Trends Neurosci, vol.35, pp.638-647, 2012.

A. Scimemi, J. S. Meabon, R. L. Woltjer, J. M. Sullivan, J. S. Diamond et al., Amyloid-beta1-42 slows clearance of synaptically released glutamate by mislocalizing astrocytic GLT-1, J. Neurosci, vol.33, pp.5312-5318, 2013.

H. A. Scott, F. M. Gebhardt, A. D. Mitrovic, R. J. Vandenberg, and P. R. Dodd, Glutamate transporter variants reduce glutamate uptake in Alzheimer's disease, Neurobiol. Aging, vol.32, pp.1-11, 2011.

J. L. Seidel, M. Faideau, I. Aiba, U. Pannasch, C. Escartin et al., Ciliary neurotrophic factor (CNTF) activation of astrocytes decreases spreading depolarization susceptibility and increases potassium clearance, Glia, vol.63, pp.91-103, 2014.
URL : https://hal.archives-ouvertes.fr/cea-02168392

S. Sekar, J. Mcdonald, L. Cuyugan, J. Aldrich, A. Kurdoglu et al., Alzheimer's disease is associated with altered expression of genes involved in immune response and mitochondrial processes in astrocytes, Neurobiol. Aging, vol.36, pp.583-591, 2015.

A. Serrano-pozo, T. Gomez-isla, J. H. Growdon, M. P. Frosch, and B. T. Hyman, A phenotypic change but not proliferation underlies glial responses in Alzheimer disease, Am. J. Pathol, vol.182, pp.2332-2344, 2013.

A. Sharif and V. Prevot, Isolation and culture of human astrocytes, Methods Mol. Biol, vol.814, pp.137-151, 2012.

J. G. Sheng, S. Shirabe, N. Nishiyama, and J. P. Schwartz, Alterations in striatal glial fibrillary acidic protein expression in response to 6-hydroxydopamine-induced denervation, Exp. Brain Res, vol.95, pp.450-456, 1993.

N. Shibata, A. Kakita, H. Takahashi, Y. Ihara, K. Nobukuni et al., Activation of signal transducer and activator of transcription-3 in the spinal cord of sporadic amyotrophic lateral sclerosis patients, Neurodegener. Dis, vol.6, pp.118-126, 2009.

N. Shibata, T. Yamamoto, A. Hiroi, Y. Omi, Y. Kato et al., Activation of STAT3 and inhibitory effects of pioglitazone on STAT3 activity in a mouse model of SOD1-mutated amyotrophic lateral sclerosis, Neuropathology, vol.30, pp.353-360, 2010.

K. Shibuki, H. Gomi, L. Chen, S. Bao, J. J. Kim et al., Deficient cerebellar long-term depression, impaired eyeblink conditioning, and normal motor coordination in GFAP mutant mice, Neuron, vol.16, pp.587-599, 1996.

N. R. Sibson, J. P. Lowe, A. M. Blamire, M. J. Martin, T. P. Obrenovitch et al., Acute astrocyte activation in brain detected by MRI: new insights into T(1) hypointensity, J. Cereb. Blood Flow Metab, vol.28, pp.621-632, 2008.

J. E. Simpson, P. G. Ince, G. Lace, G. Forster, P. J. Shaw et al., Astrocyte phenotype in relation to Alzheimer-type pathology in the ageing brain, Neurobiol. Aging, vol.31, pp.578-590, 2010.

J. E. Simpson, P. G. Ince, P. J. Shaw, P. R. Heath, R. Raman et al., Microarray analysis of the astrocyte transcriptome in the aging brain: relationship to Alzheimer's pathology and APOE genotype, Neurobiol. Aging, vol.32, pp.1795-1807, 2011.

S. K. Singhrao, J. W. Neal, B. P. Morgan, and P. Gasque, Increased complement biosynthesis by microglia and complement activation on neurons in Huntington's disease, Exp. Neurol, vol.159, pp.362-376, 1999.

S. Sirko, G. Behrendt, P. A. Johansson, P. Tripathi, M. Costa et al., Reactive glia in the injured brain acquire stem cell properties in response to sonic hedgehog glia, Cell Stem Cell, vol.12, pp.426-439, 2013.

S. A. Sloan and B. A. Barres, Looks can be deceiving: reconsidering the evidence for gliotransmission, Neuron, vol.84, pp.1112-1115, 2014.

M. V. Sofroniew, Molecular dissection of reactive astrogliosis and glial scar formation, Trends Neurosci, vol.32, pp.638-647, 2009.

M. V. Sofroniew, Multiple roles for astrocytes as effectors of cytokines and inflammatory mediators, Neuroscientist, vol.20, pp.160-172, 2014.

M. V. Sofroniew, Astrocyte barriers to neurotoxic inflammation, Nat. Rev. Neurosci, vol.16, pp.249-263, 2015.

M. V. Sofroniew and H. V. Vinters, Astrocytes: biology and pathology, Acta Neuropathol, vol.119, pp.7-35, 2010.

G. G. Somjen, Nervenkitt: notes on the history of the concept of neuroglia, Glia, vol.1, pp.2-9, 1988.

N. Soni, B. V. Reddy, and P. Kumar, GLT-1 transporter: an effective pharmacological target for various neurological disorders, Pharmacol. Biochem. Behav, vol.127, pp.70-81, 2014.

K. Sriram, S. A. Benkovic, M. A. Hebert, D. B. Miller, O. 'callaghan et al., Induction of gp130-related cytokines and activation of JAK2/STAT3 pathway in astrocytes precedes up-regulation of glial fibrillary acidic protein in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of neurodegeneration: key signaling pathway for astrogliosis in vivo?, J. Biol. Chem, vol.279, 2004.

T. Takano, X. Han, R. Deane, B. Zlokovic, and M. Nedergaard, Twophoton imaging of astrocytic Ca2+ signaling and the microvasculature in experimental mice models of Alzheimer's disease, Ann. N.Y. Acad. Sci, vol.1097, pp.40-50, 2007.

M. Talantova, S. Sanz-blasco, X. Zhang, P. Xia, M. W. Akhtar et al., Abeta induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss, Proc. Natl. Acad. Sci. U.S.A, vol.110, 2013.

K. Terai, A. Matsuo, and P. L. Mcgeer, Enhancement of immunoreactivity for NF-kappa B in the hippocampal formation and cerebral cortex of Alzheimer's disease, Brain Res, vol.735, pp.159-168, 1996.

D. R. Thal, The role of astrocytes in amyloid beta-protein toxicity and clearance, Exp. Neurol, vol.236, pp.1-5, 2012.

X. Tong, Y. Ao, G. C. Faas, S. E. Nwaobi, J. Xu et al., Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington's disease model mice, Nat. Neurosci, vol.17, pp.694-703, 2014.

M. Tortarolo, P. Veglianese, N. Calvaresi, A. Botturi, C. Rossi et al., Persistent activation of p38 mitogen-activated protein kinase in a mouse model of familial amyotrophic lateral sclerosis correlates with disease progression, Mol. Cell. Neurosci, vol.23, pp.22-30, 2003.

U. Trager, R. Andre, N. Lahiri, A. Magnusson-lind, A. Weiss et al., HTT-lowering reverses Huntington's disease immune dysfunction caused by NFkappaB pathway dysregulation, Brain, vol.137, pp.819-833, 2014.

H. H. Tsai, H. Li, L. C. Fuentealba, A. V. Molofsky, R. Taveira-marques et al., Regional astrocyte allocation regulates CNS synaptogenesis and repair, Science, vol.337, pp.358-362, 2012.

B. J. Turner, T. , and K. , Transgenics, toxicity and therapeutics in rodent models of mutant SOD1-mediated familial ALS, Prog. Neurobiol, vol.85, pp.94-134, 2008.

S. Tydlacka, C. E. Wang, X. Wang, S. Li, and X. J. Li, Differential activities of the ubiquitin-proteasome system in neurons versus glia may account for the preferential accumulation of misfolded proteins in neurons, J. Neurosci, vol.28, pp.13285-13295, 2008.

M. Valenza, V. Leoni, J. M. Karasinska, L. Petricca, J. Fan et al., Cholesterol defect is marked across multiple rodent models of Huntington's disease and is manifest in astrocytes, J. Neurosci, vol.30, 2010.

M. Valenza, M. Marullo, E. Di-paolo, E. Cesana, C. Zuccato et al., Disruption of astrocyte-neuron cholesterol cross talk affects neuronal function in Huntington's disease, Cell Death Differ, vol.22, pp.690-702, 2015.

M. R. Vargas, D. A. Johnson, D. W. Sirkis, A. Messing, J. et al., Nrf2 activation in astrocytes protects against neurodegeneration in mouse models of familial amyotrophic lateral sclerosis, J. Neurosci, vol.28, pp.13574-13581, 2008.

M. R. Vargas, J. , and J. A. , The Nrf2-ARE cytoprotective pathway in astrocytes, Expert Rev. Mol. Med, vol.11, 2009.

M. R. Vargas, M. Pehar, P. Cassina, L. Martinez-palma, J. A. Thompson et al., Fibroblast growth factor-1 induces heme oxygenase-1 via nuclear factor erythroid 2-related factor 2 (Nrf2) in spinal cord astrocytes: consequences for motor neuron survival, J. Biol. Chem, vol.280, pp.25571-25579, 2005.

S. Venneti, B. J. Lopresti, and C. A. Wiley, The peripheral benzodiazepine receptor (Translocator protein 18kDa) in microglia: from pathology to imaging, Prog. Neurobiol, vol.80, pp.308-322, 2006.

A. J. Vincent, R. Gasperini, L. Foa, and D. H. Small, Astrocytes in Alzheimer's disease: emerging roles in calcium dysregulation and synaptic plasticity, J. Alzheimers. Dis, vol.22, pp.699-714, 2010.

R. Virchow, Gesammelte Abhandlungen zur wissenschaftlichen Medizin, 1856.

J. C. Vis, L. F. Nicholson, R. L. Faull, W. H. Evans, N. J. Severs et al., Connexin expression in Huntington's diseased human brain, Cell Biol. Int, vol.22, pp.837-847, 1998.

J. P. Vonsattel, R. H. Myers, T. J. Stevens, R. J. Ferrante, E. D. Bird et al., Neuropathological classification of Huntington's disease, J. Neuropathol. Exp. Neurol, vol.44, pp.559-577, 1985.

C. Y. Wang, S. H. Yang, and S. F. Tzeng, MicroRNA-145 as one negative regulator of astrogliosis, Glia, vol.63, pp.194-205, 2015.

L. Wang, F. Lin, J. Wang, J. Wu, R. Han et al., Expression of mutant N-terminal huntingtin fragment (htt552-100Q) in astrocytes suppresses the secretion of BDNF, Brain Res, vol.1449, pp.69-82, 2012.

K. B. Washburn and J. T. Neary, P2 purinergic receptors signal to STAT3 in astrocytes: difference in STAT3 responses to P2Y and P2X receptor activation, Neuroscience, vol.142, pp.411-423, 2006.

C. Weigert, Beiträge zur Kenntnis der normalen menschlichen Neuroglia, Zeitschrift für Psychologie und Physiologie der Sinnesorgane, ed Liepmann, 1895.

E. J. Wild and S. J. Tabrizi, Targets for future clinical trials in Huntington's disease: what's in the pipeline?, Mov. Disord, vol.29, pp.1434-1445, 2014.

U. Wilhelmsson, E. A. Bushong, D. L. Price, B. L. Smarr, V. Phung et al., Redefining the concept of reactive astrocytes as cells that remain within their unique domains upon reaction to injury, Proc. Natl. Acad. Sci. U.S.A, vol.103, pp.17513-17518, 2006.

T. Witjas, E. Kaphan, J. P. Azulay, O. Blin, M. Ceccaldi et al., Nonmotor fluctuations in Parkinson's disease: frequent and disabling, Neurology, vol.59, pp.408-413, 2002.

S. Witte and S. A. Muljo, Integrating non-coding RNAs in JAK-STAT regulatory networks, JAKSTAT, vol.3, p.28055, 2014.

A. M. Wojtowicz, A. Dvorzhak, M. Semtner, and R. Grantyn, Reduced tonic inhibition in striatal output neurons from Huntington mice due to loss of astrocytic GABA release through GAT-3, Front. Neural Circuits, vol.7, p.188, 2013.

R. L. Woltjer, K. Duerson, J. M. Fullmer, P. Mookherjee, A. M. Ryan et al., Aberrant detergent-insoluble excitatory amino acid transporter 2 accumulates in Alzheimer disease, J. Neuropathol. Exp. Neurol, vol.69, pp.667-676, 2010.

Z. Wu, Z. Guo, M. Gearing, C. , and G. , Tonic inhibition in dentate gyrus impairs long-term potentiation and memory in an Alzhiemer's disease model, Nat. Commun, vol.5, p.4159, 2014.

T. Wyss-coray, J. D. Loike, T. C. Brionne, E. Lu, R. Anankov et al., Adult mouse astrocytes degrade amyloid-beta in vitro and in situ, Nat. Med, vol.9, pp.453-457, 2003.

Q. Xiao, P. Yan, X. Ma, H. Liu, R. Perez et al., Enhancing astrocytic lysosome biogenesis facilitates abeta clearance and attenuates amyloid plaque pathogenesis, J. Neurosci, vol.34, pp.9607-9620, 2014.

P. Yan, X. Hu, H. Song, K. Yin, R. J. Bateman et al., Matrix metalloproteinase-9 degrades amyloid-beta fibrils in vitro and compact plaques in situ, J. Biol. Chem, vol.281, pp.24566-24574, 2006.

Y. Yoshii, A. Otomo, L. Pan, M. Ohtsuka, and S. Hadano, Loss of glial fibrillary acidic protein marginally accelerates disease progression in a SOD1(H46R) transgenic mouse model of ALS, Neurosci. Res, vol.70, pp.321-329, 2011.

J. L. Zamanian, L. Xu, L. C. Foo, N. Nouri, L. Zhou et al., Genomic analysis of reactive astrogliosis, J. Neurosci, vol.32, pp.6391-6410, 2012.

T. Zeis, I. Allaman, M. Gentner, K. Schroder, J. Tschopp et al., Metabolic gene expression changes in astrocytes in Multiple Sclerosis cerebral cortex are indicative of immune-mediated signaling, Brain Behav. Immun, 2015.

B. V. Zlokovic, The blood-brain barrier in health and chronic neurodegenerative disorders, Neuron, vol.57, pp.178-201, 2008.