J. Bass and J. S. Takahashi, Circadian rhythms: redox redux, Nature, vol.469, pp.476-478, 2011.

P. E. Hockberger, A history of ultraviolet photobiology for humans, animals and microorganisms, Photochem. Photobiol, vol.76, pp.561-579, 2002.

T. A. Legates, D. C. Fernandez, and S. Hattar, Light as a central modulator of circadian rhythms, sleep and affect, Nat. Rev. Neurosci, vol.15, pp.443-454, 2014.

J. B. Robertson, C. R. Davis, and C. H. Johnson, Visible light alters yeast metabolic rhythms by inhibiting respiration, Proc. Natl Acad. Sci. USA, vol.110, pp.21130-21135, 2013.

H. C. Causton, K. A. Feeney, C. A. Ziegler, and J. S. O'neill, Metabolic cycles in yeast share features conserved among circadian rhythms, Curr. Biol, vol.25, pp.1056-1062, 2015.

M. Jacquet, G. Renault, S. Lallet, J. De-mey, and A. Goldbeter, Oscillatory nucleocytoplasmic shuttling of the general stress response transcriptional activators Msn2 and Msn4 in Saccharomyces cerevisiae, J. Cell Biol, vol.161, pp.497-505, 2003.

A. Idnurm, S. Verma, and L. M. Corrochano, A glimpse into the basis of vision in the kingdom Mycota, Fungal Genet. Biol, vol.47, pp.881-892, 2010.

W. Gorner, Nuclear localization of the C 2 H 2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity, Genes Dev, vol.12, pp.586-597, 1998.

N. Hao, B. A. Budnik, J. Gunawardena, and E. K. O'shea, Tunable signal processing through modular control of transcription factor translocation, Science, vol.339, pp.460-464, 2013.

D. Wever, V. Reiter, W. Ballarini, A. Ammerer, G. Brocard et al., A dual role for PP1 in shaping the Msn2-dependent transcriptional response to glucose starvation, EMBO J, vol.24, pp.4115-4123, 2005.

A. Santhanam, A. Hartley, K. Duvel, J. R. Broach, and S. Garrett, PP2A phosphatase activity is required for stress and Tor kinase regulation of yeast stress response factor Msn2p, Eukaryot. Cell, vol.3, pp.1261-1271, 2004.

C. Garmendia-torres, A. Goldbeter, and M. Jacquet, Nucleocytoplasmic oscillations of the yeast transcription factor Msn2: evidence for periodic PKA activation, Curr. Biol, vol.17, pp.1044-1049, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00194478

J. Nikawa, S. Cameron, T. Toda, K. M. Ferguson, and M. Wigler, Rigorous feedback control of cAMP levels in Saccharomyces cerevisiae, Genes Dev, vol.1, pp.931-937, 1987.

K. Bodvard, Continuous light exposure causes cumulative stress that affects the localization oscillation dynamics of the transcription factor Msn2p, Biochim. Biophys. Acta, vol.1813, pp.358-366, 2011.

M. Molin and A. B. Demir, Linking peroxiredoxin and vacuolar-ATPase functions in calorie restriction-mediated life span extension, Int. J. Cell Biol, p.12, 2014.

T. Nystrom, J. Yang, and M. Molin, Peroxiredoxins, gerontogenes linking aging to genome instability and cancer, Genes Dev, vol.26, 2001.

A. V. Peskin, Hyperoxidation of peroxiredoxins 2 and 3: rate constants for the reactions of the sulfenic acid of the peroxidatic cysteine, J. Biol. Chem, vol.288, pp.14170-14177, 2013.

K. S. Yang, Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid, J. Biol. Chem, vol.277, pp.38029-38036, 2002.

C. A. Neumann, Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression, Nature, vol.424, pp.561-565, 2003.

M. E. Huang, A. G. Rio, A. Nicolas, and R. D. Kolodner, A genomewide screen in Saccharomyces cerevisiae for genes that suppress the accumulation of mutations, Proc. Natl Acad. Sci. USA, vol.100, pp.11529-11534, 2003.

W. De-haes, Metformin promotes lifespan through mitohormesis via the peroxiredoxin PRDX-2, Proc. Natl Acad. Sci. USA, vol.111, pp.2501-2509, 2014.

M. Molin, Life span extension and H 2 O 2 -resistance elicited by caloric restriction require the peroxiredoxin Tsa1 in Saccharomyces cerevisiae, Mol. Cell, vol.43, pp.823-833, 2011.

K. S. Lee, JNK/FOXO-mediated neuronal expression of fly homologue of peroxiredoxin II reduces oxidative stress and extends life span, J. Biol. Chem, vol.284, pp.29454-29461, 2009.

S. Hanzen, Lifespan control by redox-dependent recruitment of chaperones to misfolded proteins, Cell, vol.166, pp.140-151, 2016.

J. S. O'neill and A. B. Reddy, Circadian clocks in human red blood cells, Nature, vol.469, pp.498-503, 2011.

J. S. O'neill, Circadian rhythms persist without transcription in a eukaryote, Nature, vol.469, pp.554-558, 2011.

R. S. Edgar, Peroxiredoxins are conserved markers of circadian rhythms, Nature, vol.485, pp.459-464, 2012.

J. S. O'neill, Metabolic molecular markers of the tidal clock in the marine crustacean Eurydice pulchra, Curr. Biol, vol.25, pp.326-327, 2015.

P. E. Hockberger, Activation of flavin-containing oxidases underlies light-induced production of H 2 O 2 in mammalian cells, Proc. Natl Acad. Sci. USA, vol.96, pp.6255-6260, 1999.

J. Hirayama, S. Cho, and P. Sassone-corsi, Circadian control by the reduction/oxidation pathway: catalase represses light-dependent clock gene expression in the zebrafish, Proc. Natl Acad. Sci. USA, vol.104, pp.15747-15752, 2007.

K. Logg, K. Bodvard, A. Blomberg, and M. Kall, Investigations on light-induced stress in fluorescence microscopy using nuclear localization of the transcription factor Msn2p as a reporter, FEMS Yeast Res, vol.9, pp.875-884, 2009.

Y. G. Ermakova, Red fluorescent genetically encoded indicator for intracellular hydrogen peroxide, Nat. Commun, vol.5, p.5222, 2014.

V. V. Belousov, Genetically encoded fluorescent indicator for intracellular hydrogen peroxide, Nat. Methods, vol.3, pp.281-286, 2006.

B. Morgan, Real-time monitoring of basal H 2 O 2 levels with peroxiredoxin-based probes, Nat. Chem. Biol, vol.12, pp.437-443, 2016.

A. M. Edwards, Structure and general properties of flavins, Methods Mol. Biol, vol.1146, pp.3-13, 2014.

A. Losi and W. Gartner, The evolution of flavin-binding photoreceptors: an ancient chromophore serving trendy blue-light sensors, Annu. Rev. Plant Biol, vol.63, pp.49-72, 2012.

V. Massey, Activation of molecular oxygen by flavins and flavoproteins, J. Biol. Chem, vol.269, pp.22459-22462, 1994.

V. Massey and P. Hemmerich, Photoreduction of flavoproteins and other biological compounds catalyzed by deazaflavins, Biochemistry, vol.17, pp.9-16, 1978.

S. Boisnard, H 2 O 2 activates the nuclear localization of Msn2 and Maf1 through thioredoxins in Saccharomyces cerevisiae, Eukaryot. Cell, vol.8, pp.1429-1438, 2009.

A. M. Day, Inactivation of a peroxiredoxin by hydrogen peroxide is critical for thioredoxin-mediated repair of oxidized proteins and cell survival, Mol. Cell, vol.45, pp.398-408, 2012.

Z. A. Wood, L. B. Poole, and P. A. Karplus, Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling, Science, vol.300, pp.650-653, 2003.

C. Kumar, Glutathione revisited: a vital function in iron metabolism and ancillary role in thiol-redox control, EMBO J, vol.30, pp.2044-2056, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00606359

W. Gorner, Acute glucose starvation activates the nuclear localization signal of a stress-specific yeast transcription factor, EMBO J, vol.21, pp.135-144, 2002.

W. Reiter, Yeast protein phosphatase 2A-Cdc55 regulates the transcriptional response to hyperosmolarity stress by regulating Msn2 and Msn4 chromatin recruitment, Mol. Cell Biol, vol.33, pp.1057-1072, 2013.

J. Nikawa, P. Sass, and M. Wigler, Cloning and characterization of the low-affinity cyclic AMP phosphodiesterase gene of Saccharomyces cerevisiae, Mol. Cell Biol, vol.7, pp.3629-3636, 1987.

A. C. Bishop, A chemical switch for inhibitor-sensitive alleles of any protein kinase, Nature, vol.407, pp.395-401, 2000.

G. Griffioen, P. Anghileri, E. Imre, M. D. Baroni, and H. Ruis, Nutritional control of nucleocytoplasmic localization of cAMP-dependent protein kinase catalytic and regulatory subunits in Saccharomyces cerevisiae, J. Biol. Chem, vol.275, pp.1449-1456, 2000.

V. Tudisca, PKA isoforms coordinate mRNA fate during nutrient starvation, J. Cell Sci, vol.125, pp.5221-5232, 2012.
DOI : 10.1242/jcs.111534

URL : http://jcs.biologists.org/content/125/21/5221.full.pdf

C. A. Shively, Large-scale analysis of kinase signaling in yeast pseudohyphal development identifies regulation of ribonucleoprotein granules, PLoS Genet, vol.11, p.1005564, 2015.

N. Talarek, Initiation of the TORC1-regulated G0 program requires Igo1/2, which license specific mRNAs to evade degradation via the 5 0 -3 0 mRNA decay pathway, Mol. Cell, vol.38, pp.345-355, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02134954

A. R. Guntur, Drosophila TRPA1 isoforms detect UV light via photochemical production of H 2 O 2, Proc. Natl Acad. Sci. USA, vol.112, pp.5753-5761, 2015.
DOI : 10.1073/pnas.1514862112

URL : https://www.pnas.org/content/pnas/112/42/E5753.full.pdf

S. Fourquet, M. E. Huang, B. D'autreaux, and M. B. Toledano, The dual functions of thiol-based peroxidases in H 2 O 2 scavenging and signaling, Antioxid. Redox Signal, vol.10, pp.1565-1576, 2008.

J. S. O'neill, E. S. Maywood, J. E. Chesham, J. S. Takahashi, and M. H. Hastings, cAMP-dependent signaling as a core component of the mammalian circadian pacemaker, Science, vol.320, pp.949-953, 2008.

E. M. Gibson, W. P. Williams, and L. J. Kriegsfeld, Aging in the circadian system: considerations for health, disease prevention and longevity, Exp. Gerontol, vol.44, pp.51-56, 2009.

R. V. Kondratov, A. A. Kondratova, V. Y. Gorbacheva, O. V. Vykhovanets, and M. P. Antoch, Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock, Genes Dev, vol.20, pp.1868-1873, 2006.

N. Le-moan, G. Clement, S. Le-maout, F. Tacnet, and M. B. Toledano, The Saccharomyces cerevisiae proteome of oxidized protein thiols: contrasted functions for the thioredoxin and glutathione pathways, J. Biol. Chem, vol.281, pp.10420-10430, 2006.

C. B. Brachmann, Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications, Yeast, vol.14, pp.115-132, 1998.

G. Giaever, Functional profiling of the Saccharomyces cerevisiae genome, Nature, vol.418, pp.387-391, 2002.

A. L. Goldstein and J. H. Mccusker, Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae, Yeast, vol.15, pp.1541-1553, 1999.

S. Stuckey, K. Mukherjee, and F. Storici, In vivo site-specific mutagenesis and gene collage using the delitto perfetto system in yeast Saccharomyces cerevisiae, Methods Mol. Biol, vol.745, pp.173-191, 2011.

G. M. Santangelo, Glucose signaling in Saccharomyces cerevisiae, Microbiol. Mol. Biol. Rev, vol.70, pp.253-282, 2006.
DOI : 10.1128/mmbr.70.1.253-282.2006

URL : https://mmbr.asm.org/content/mmbr/70/1/253.full.pdf

D. Mumberg, R. Muller, and M. Funk, Regulatable promoters of Saccharomyces cerevisiae: comparison of transcriptional activity and their use for heterologous expression, Nucleic Acids Res, vol.22, pp.5767-5768, 1994.

G. Rigaut, A generic protein purification method for protein complex characterization and proteome exploration, Nat. Biotechnol, vol.17, pp.1030-1032, 1999.
DOI : 10.1038/13732

E. Durchschlag, W. Reiter, G. Ammerer, and C. Schuller, Nuclear localization destabilizes the stress-regulated transcription factor Msn2, J. Biol. Chem, vol.279, pp.55425-55432, 2004.

I. Borg and P. Groenen, Modern Multidimensional Scaling: Theory and Applications, pp.207-212, 2005.

T. Tatsuta, S. Augustin, M. Nolden, B. Friedrichs, and T. Langer, m-AAA protease-driven membrane dislocation allows intramembrane cleavage by rhomboid in mitochondria, EMBO J, vol.26, pp.325-335, 2007.
DOI : 10.1038/sj.emboj.7601514

URL : http://emboj.embopress.org/content/26/2/325.full.pdf

W. Reiter, Validation of regulated protein phosphorylation events in yeast by quantitative mass spectrometry analysis of purified proteins, Proteomics, vol.12, pp.3030-3043, 2012.

S. Kim, N. Gupta, and P. A. Pevzner, Spectral probabilities and generating functions of tandem mass spectra: a strike against decoy databases, J. Proteome Res, vol.7, pp.3354-3363, 2008.

T. Taus, Universal and confident phosphorylation site localization using phosphoRS, J. Proteome Res, vol.10, pp.5354-5362, 2011.

J. A. Vizcaino, The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013, Nucleic Acids Res, vol.41, pp.1063-1069, 2013.

, Christoph Schüller and Thomas Nyström are acknowledged for comments on the manuscript and we thank Anders Blomberg and Gustav Ammerer for support throughout this study. We are also grateful to Dorothea Anrather and David Hollenstein for help with MS analyses

F. Eisele, T. Tatsuta, and T. Langer, Joseph Heitman and Joakim Norbeck for providing reagents, and the Centre of Cellular Imaging, Sahlgrenska Academy, for the use of imaging equipment and support from the staff. The Olympus Cell^R microscope was purchased with support from Ingabritt och Arne Lundbergs stiftelse, This work was supported by grants from the Swedish Research Council (to M.M.), by the foundations of Olle Engkvist Byggmästare and Carl Trygger (to M.M.), by the Knut and Alice Wallenberg foundation (to M.K.) and by ANR ERRed and PLBIO INCA_5869