A. Blanco, Positron Range Effects on the Spatial Resolution of RPC-PET, IEEE Nucl.Sci.Symp.Conf.Rec, pp.2570-2573, 2006.
DOI : 10.1109/nssmic.2006.354433

S. J. Brawley, S. Armitage, J. Beale, . Leslie, . De et al., Electron-Like Scattering of Positronium, Science, vol.330, p.789, 2010.
DOI : 10.1126/science.1192322

S. J. Brawley, A. I. Williams, M. Shipman, and G. Laricchia, Resonant Scattering of Positronium in Collision with CO2, Phys.Rev.Lett, vol.105, p.263401, 2010.

C. Herraiz, . Jl, P. Corzo, and J. M. Udías, A General Framework to study Positron Range Distributions, IEEE Nuclear Science Symposium Conference Record, pp.2733-2737, 2011.

C. Herraiz, . Jl, S. Espana, M. Desco, J. J. Vaquero et al., Positron Range Effects in High Resolution 3D PET Imaging, IEEE Nuclear Science Symposium Conference Record, pp.2788-2791, 2009.

C. Herraiz, . Jl, S. España, M. Desco, J. J. Vaquero et al., Validation of PeneloPET Positron Range Estimations, IEEE Nucl.Sci.Symp.Conf.Rec, pp.2396-2399, 2010.

C. Champion, Theoretical cross sections for electron collisions in water: structure of electron tracks, Phys.Med.Biol, vol.48, pp.2147-2168, 2003.

C. Champion, L. Loirec, and C. , Positron follow-up in liquid water: I. A new Monte Carlo trackstructure code, Phys.Med.Biol, vol.51, pp.1707-1723, 2006.
DOI : 10.1088/0031-9155/51/7/005

C. Champion, L. Loirec, and C. , Positron follow-up in liquid water: II. Spatial and energetic study for the most important radioisotopes used in PET, Phys.Med.Biol, vol.52, pp.6605-6625, 2007.

C. Champion, L. C. Le, and B. Stosic, EPOTRAN: a full-differential Monte Carlo code for electron and positron transport in liquid and gaseous water, Int.J Radiat.Biol, vol.88, pp.54-61, 2012.
DOI : 10.3109/09553002.2011.641451

Z. H. Cho, J. K. Chan, L. Ericksson, M. Singh, S. Graham et al., Positron ranges obtained from biomedically important positron-emitting radionuclides, J Nucl Med, vol.16, pp.1174-1176, 1975.

S. E. Derenzo, Precision measurement of annihilation point spread distributions for medically important positron emitters, pp.819-823, 1979.

S. E. Derenzo, Mathematical Removal of Positron Range Blurring in High-Resolution Tomography, IEEE Trans.Nucl.Sci, vol.33, pp.565-569, 1986.

F. Haddad, L. Ferrer, A. Guertin, T. Carlier, N. Michel et al., ARRONAX, a highenergy and high-intensity cyclotron for nuclear medicine, Eur.J.Nucl.Med.Mol.Imaging, vol.35, pp.1377-1387, 2008.
URL : https://hal.archives-ouvertes.fr/in2p3-00289288

K. S. Krane, , 1988.

L. Loirec, C. Champion, and C. , Track structure simulation for positron emitters of medical interest. Part I: The case of the allowed decay isotopes, Nucl.Instrum.Methods Phys.Res., Sect.A, vol.582, pp.644-653, 2007.

W. Lehnert, . Gregoire, . Mc, A. Reilhac, and S. R. Meikle, Analytical positron range modelling in heterogeneous media for PET Monte Carlo simulation, Phys.Med.Biol, vol.56, pp.3313-3335, 2011.

L. Hoffman and E. J. , Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution, Phys.Med.Biol, vol.44, pp.781-799, 1999.

M. Lubberink, V. Tolmachev, S. Beshara, and H. Lundqvist, Quantification aspects of patient studies with Fe-52 in positron emission tomography, Appl.Radiat.Isot, vol.51, pp.707-715, 1999.

P. Brownell and G. L. , Annihilation density distribution calculations for medically important positron emitters, IEEE Trans.Med.Imaging, vol.11, pp.373-378, 1992.

M. Partridge, A. Spinelli, W. Ryder, and C. Hindorf, The effect of ? + energy on performance of a small animal PET camera, Nucl.Instrum.Methods Phys.Res., Sect.A, vol.568, pp.933-936, 2006.

J. Y. Qi, R. M. Leahy, . Cherry, . Sr, A. Chatziioannou et al., High-resolution 3D Bayesian image reconstruction using the microPET small-animal scanner, Phys.Med.Biol, vol.43, pp.1001-1013, 1998.

A. Rahmim, J. Tang, . Lodge, . Ma, S. Lashkari et al., , 2008.

, Analytic system matrix resolution modeling in PET: an application to Rb-82 cardiac imaging, Phys.Med.Biol, vol.53, pp.5947-5965

A. Ruangma, B. Bai, J. S. Lewis, . Sun, . Xk et al., Three-dimensional maximum a posteriori (MAP) imaging with radiopharmaceuticals labeled with three Cu radionuclides, Nucl.Med.Biol, vol.33, pp.217-226, 2006.

F. Salvat, J. M. Fernández-varea, J. Sempau, A. Sánchez-crespo, P. Andreo et al., PENELOPE-A code system for Monte Carlo simulation of electron and photon transport OECD Nuclear Energy Agency Issy-les-Moulineaux, Eur.J.Nucl.Med.Mol.Imaging, vol.31, pp.44-51, 2004.

P. Venkataramaiah, K. Gopala, A. Basavaraju, S. S. Suryanarayana, and H. Sanjeeviah, A Simple Relation for the Fermi Function, J.Phys.G: Nucl.Part.Phys, vol.11, pp.359-364, 1985.