Service interruption on Monday 11 July from 12:30 to 13:00: all the sites of the CCSD (HAL, Epiciences, SciencesConf, AureHAL) will be inaccessible (network hardware connection).
Skip to Main content Skip to Navigation
Journal articles

Optimized quantification of translocator protein radioligand $^{18}$F-DPA-714 uptake in the brain of genotyped healthy volunteers

Abstract : Translocator protein (TSPO) is expressed at a low level in healthy brain and is upregulated during inflammatory processes that may occur in neurodegenerative diseases. Thus, TSPO may be a suitable in vivo indicator of neurodegeneration. Here, we quantified the $^{18}$F-DPA-714 radioligand in healthy TSPO-genotyped volunteers and developed a method to eliminate the need for invasive arterial blood sampling. Methods: Ten controls (7 high-affinity binders [HABs] and 3 mixed-affinity binders [MABs]) underwent $^{18}$F-DPA-714 PET with arterial and venous sampling. $^{18}$F-DPA-714 binding was quantified with a metabolite-corrected arterial plasma input function, using the 1-and 2-tissue-compartment models (TCMs) as well as the Logan analysis to estimate total volume distribution (V$_T$) in the regions of interest. Alternative quantification methods were tested, including tissue-to-plasma ratio or population-based input function approaches normalized by late time points of arterial or venous samples. Results: The distribution pattern of $^{18}$F-DPA-714 was consistent with the known distribution of TSPO in humans, with the thalamus displaying the highest binding and the cerebellum the lowest. The 2-TCM best described the regional kinetics of 18 F-DPA-714 in the brain, with good identifiability (percentage coefficient of variation , 5%). For each region of interest, V$_T$ was 47.6% ± 6.3% higher in HABs than in MABs, and estimates from the 2-TCM and the Logan analyses were highly correlated. Equilibrium was reached at 60 min after injection. V$_T$ calculated with alternative methods using arterial samples was strongly and significantly correlated with that calculated by the 2-TCM. Replacement of arterial with venous sampling in these methods led to a significant but lower correlation. Conclusion: Gen-otyping of subjects is a prerequisite for a reliable quantification of $^{18}$F-DPA-714 PET images. The 2-TCM and the Logan analyses are accurate methods to estimate $^{18}$F-DPA-714 V T in the human brain of both HAB and MAB individuals. Population-based input function and tissue-to-plasma ratio with a single arterial sample are promising alternatives to classic arterial plasma input function. Substitution with venous samples is promising but still requires methodologic improvements.
Document type :
Journal articles
Complete list of metadata

Cited literature [28 references]  Display  Hide  Download

https://hal-cea.archives-ouvertes.fr/cea-02132948
Contributor : sonia lavisse Connect in order to contact the contributor
Submitted on : Friday, May 17, 2019 - 5:05:11 PM
Last modification on : Friday, May 20, 2022 - 11:06:44 AM

File

Lavisse-JNM2015.pdf
Publisher files allowed on an open archive

Identifiers

Citation

Sonia Lavisse, Daniel Garcia-Lorenzo, Marie-Anne Peyronneau, Benedetta Bodini, Claire Thiriez, et al.. Optimized quantification of translocator protein radioligand $^{18}$F-DPA-714 uptake in the brain of genotyped healthy volunteers. Journal of Nuclear Medicine, Society of Nuclear Medicine, 2015, 56 (7), pp.1048-1054. ⟨10.2967/jnumed.115.156083⟩. ⟨cea-02132948⟩

Share

Metrics

Record views

61

Files downloads

166