I. Abril, P. Vera, R. Garcia-molina, I. Kyriakou, and D. Emfietzoglou, Lateral spread of dose distribution by therapeutic proton beams in liquid water, Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms, vol.352, pp.176-80, 2015.

A. O. Allen, The radiation chemistry of water and aqueous solutions. Princeton: D. Van Nostrand, 1961.

A. Appleby and H. A. Schwarz, Radical and molecular yields in water irradiated by.gamma.-rays and heavy ions, J Phys Chem, vol.73, issue.6, pp.1937-1978, 1969.

A. Balcerzyk and G. Baldacchino, Implementation of laser induced fluorescence in a pulse radiolysis experiment-a new way to analyze resazurin-like reduction mechanisms, Analyst, vol.139, pp.1707-1719, 2000.
URL : https://hal.archives-ouvertes.fr/cea-01296723

G. Baldacchino, Pulse radiolysis in water with heavy-ion beams. A short review, Radiat Phys Chem, vol.77, pp.1218-1241, 2008.

G. Baldacchino, L'apport des ions accélérés dans l'épopée de la chimie sous rayonnement, CNRS, editor. Histoire de la Recherche Contemporaine, pp.47-55

G. Baldacchino and Y. Katsumura, Chemical processes in heavy ions track, Recent trends in radiation chemistry, pp.231-54, 2010.

. Baldacchino, Cancer Nano, vol.10, p.3, 2019.

G. Baldacchino, L. Parc, D. Hickel, B. Gardes-albert, M. Abedinzadeh et al., Direct observation of HO 2 /O 2 ? free radicals generated in water by a high-linear energy transfer pulsed heavy-ion beam, Radiat Res, vol.149, issue.2, pp.128-161, 1998.

G. Baldacchino, S. Bouffard, E. Balanzat, M. Gardes-albert, Z. Abedinzadeh et al., Direct time-resolved measurement of radical species formed in water by heavy ions irradiation, Nucl Instrum Methods Physics Res Sect B Beam Interact Mater Atoms, vol.146, issue.1-4, pp.528-560, 1998.

G. Baldacchino, T. Maeyama, S. Yamashita, M. Taguchi, A. Kimura et al., Determination of the timedependent OH-yield by using fluorescent probe. Application to heavy ion irradiation, Chem Phys Lett, vol.468, issue.4-6, pp.275-284, 2009.

J. Belloni, M. Mostafavi, T. Douki, and M. Spotheim-maurizot, Radiation chemistry-from basics to applications in material and life sciences, Actual Chim, vol.316, 2008.

E. A. Blakely, F. Ngo, S. B. Curtis, and C. A. Tobias, Heavy-ion radiobiology: cellular studies, Advances in radiation biology, vol.11, pp.295-389, 1984.
DOI : 10.1016/b978-0-12-035411-5.50013-7

URL : https://digital.library.unt.edu/ark:/67531/metadc871054/m2/1/high_res_d/1109111.pdf

E. Brun and C. Sicard-roselli, Actual questions raised by nanoparticle radiosensitization, Radiat Phys Chem, vol.128, pp.134-176, 2016.
DOI : 10.1016/j.radphyschem.2016.05.024

G. V. Buxton, C. L. Greenstock, W. P. Helman, and A. B. Ross, Critical-review of rate constants for reactions of hydrated electrons, hydrogen-atoms and hydroxyl radicals (·OH/·O ? ) in aqueous-solution, J Phys Chem Ref Data, vol.17, issue.2, pp.513-886, 1988.

J. D. Castaño, J. Zhang, and J. S. Schilling, Evaluation of colorimetric assays for determination of H 2 O 2 in planta during fungal wood decomposition, J Microbiol Methods, vol.145, pp.10-13, 2018.

H. G. Crabtree, W. Cramer, M. James, and A. , The action of radium on cancer cells. II.-some factors determining the susceptibility of cancer cells to radium, Proc R Soc Lond Ser B Contain Pap Biol Character, vol.113, issue.782, pp.238-50, 1933.

A. Debierne, Recherches sur les gaz produits par les substances radioactives. Décomposition de l'eau. Annales de Physique, vol.2, pp.97-127, 1914.
DOI : 10.1051/anphys/191409020097

D. Debski, R. Smulik, J. Zielonka, B. Michalowski, M. Jakubowska et al., Mechanism of oxidative conversion of Amplex (R) Red to resorufin: pulse radiolysis and enzymatic studies, Free Radic Biol Med, vol.95, pp.323-355, 2016.

A. K. El-omar, U. Schmidhammer, B. Rousseau, J. Laverne, and M. Mostafavi, Competition reactions of H 2 O ·+ radical in concentrated Cl ? aqueous solutions: picosecond pulse radiolysis study, J Phys Chem A, vol.116, issue.47, pp.11509-11527, 2012.

D. Emfietzoglou, K. Karava, G. Papamichael, and M. Moscovitch, Monte-Carlo calculations of radial dose and restricted-let for protons in water, Radiat Prot Dosimetry, vol.110, issue.1-4, pp.871-880, 2004.

R. Farhataziz and M. Rodgers, Radiation chemistry-principles and applications, 1987.

V. Favaudon, C. Fouillade, and M. C. Vozenin, Ultrahigh dose-rate, "flash" irradiation minimizes the side-effects of radiotherapy, Cancer Radiother, vol.19, issue.6-7, pp.526-557, 2015.

C. Ferradini and J. P. Jay-gerin, Radiolysis of water and aqueous solutions-history and present state of the science, Can J Chem Revue Canadienne De Chimie, vol.77, issue.9, pp.1542-75, 1999.

S. Foley, P. Rotureau, S. Pin, G. Baldacchino, J. P. Renault et al., Radiolysis of confined water: production and reactivity of hydroxyl radicals, Angew Chem Int Ed Engl, vol.44, issue.1, pp.110-112, 2005.

C. Fouillade, V. Favaudon, M. C. Vozenin, P. H. Romeo, J. Bourhis et al., Hopes of high dose-rate radiotherapy, Bull Cancer, vol.104, issue.4, pp.380-384, 2017.

W. Friedland, M. Dingfelder, P. Kundrát, and P. Jacob, Track structures, DNA targets and radiation effects in the biophysical Monte Carlo simulation code PART RAC, Mutat Res Fundam Mol Mech Mutagen, vol.711, issue.1-2, pp.28-40, 2011.

W. Friedland, E. Schmitt, P. Kundrat, M. Dingfelder, G. Baiocco et al., Comprehensive track-structure based evaluation of DNA damage by light ions from radiotherapy-relevant energies down to stopping, Sci Rep, vol.7, 2017.

M. P. Gaigeot, R. Vuilleumier, C. Stia, M. E. Galassi, R. Rivarola et al., A multi-scale ab initio theoretical study of the production of free radicals in swift ion tracks in liquid water, J Phys B Atom Mol Opt Phys, vol.40, issue.1, pp.1-12, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00126252

R. Garcia-molina, I. Abril, C. D. Denton, S. Heredia-avalos, I. Kyriakou et al., Calculated depth-dose distributions for H+ and He+ beams in liquid water, Nucl Instrum Methods Phys Res Sect B, vol.267, issue.16, pp.2647-52, 2009.

B. Gervais, M. Beuve, G. H. Olivera, M. E. Galassi, and R. D. Rivarola, Production of HO 2 and O 2 by multiple ionization in water radiolysis by swift carbon ions, Chem Phys Lett, vol.410, issue.4-6, pp.330-334, 2005.
URL : https://hal.archives-ouvertes.fr/in2p3-00409801

B. Gervais, M. Beuve, G. H. Olivera, and M. E. Galassi, Numerical simulation of multiple ionization and high LET effects in liquid water radiolysis, Radiat Phys Chem, vol.75, issue.4, pp.493-513, 2006.
URL : https://hal.archives-ouvertes.fr/in2p3-00409741

F. O. Giesel, Ueber radium und radioactive Stoffe, Ber Dtsch Chem Ges, vol.35, issue.3, pp.3608-3619, 1902.
DOI : 10.1002/cber.190203503187

URL : https://zenodo.org/record/1426058/files/article.pdf

M. Gilles, E. Brun, and C. Sicard-roselli, Quantification of hydroxyl radicals and solvated electrons produced by irradiated gold nanoparticles suggests a crucial role of interfacial water, J Colloid Interface Sci, vol.525, pp.31-39, 2018.

R. Grall, H. Girard, L. Saad, T. Petit, C. Gesset et al., Impairing the radioresistance of cancer cells by hydrogenated nanodiamonds, Biomaterials, vol.61, pp.290-298, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01864192

J. Gu, J. Leszczynski, and H. F. Schaefer, Interactions of electrons with bare and hydrated biomolecules: from nucleic acid bases to DNA segments, Chem Rev, vol.112, issue.11, pp.5603-5643, 2012.

J. F. Hainfeld, D. N. Slatkin, and H. M. Smilowitz, The use of gold nanoparticles to enhance radiotherapy in mice, Phys Med Biol, vol.49, issue.18, pp.309-324, 2004.

E. J. Hart and J. W. Boag, Absorption spectrum of the hydrated electron in water and in aqueous solutions, J Am Chem Soc, vol.84, issue.21, pp.4090-4095, 1962.

. Baldacchino, Cancer Nano, vol.10, p.3, 2019.

Y. Hatano, Y. Katsumura, and A. Mozumder, Charged particle and photon interactions with matter. Recent advances, applications, and interfaces, 2011.

K. Haume, P. Vera, A. Verkhovtsev, E. Surdutovich, N. J. Mason et al., Transport of secondary electrons through coatings of ion-irradiated metallic nanoparticles, Eur Phys J D, vol.72, issue.6, p.22, 2018.

S. Heredia-avalos, I. Abril, C. D. Denton, J. C. Moreno-marin, and R. Garcia-molina, Target inner-shells contributions to the stopping power and straggling for H and He ions in gold, J Phys Condens Matter, vol.19, issue.46, 2007.

S. Incerti, M. Douglass, S. Penfold, S. Guatelli, and E. Bezak, Review of Geant4-DNA applications for micro and nanoscale simulations, Phys Med, vol.32, issue.10, pp.1187-200, 2016.

C. D. Jonah, A short history of the radiation chemistry of water, Radiat Res, vol.144, issue.2, pp.141-148, 1995.

V. Kanike, J. Meesungnoen, and J. P. Jay-gerin, Acid spike effect in spurs/tracks of the low/high linear energy transfer radiolysis of water: potential implications for radiobiology, RSC Adv, vol.5, issue.54, pp.43361-70, 2015.

M. Kernbaum, Sur la d'ecomposition de l'eau par les rayons ? du radium et par les rayons ultra-violets, Le Radium, vol.6, issue.8, pp.225-233, 1909.
DOI : 10.1051/radium:0190900608022500

H. Khodja, Ion microbeam irradiation for radiobiology and radical chemistry: status and prospect, J Phys Conf Series, vol.261, issue.1, p.12012, 2011.
DOI : 10.1088/1742-6596/261/1/012012

URL : http://iopscience.iop.org/article/10.1088/1742-6596/261/1/012012/pdf

H. Khodja, M. Hanot, M. Carriere, J. Hoarau, and J. F. Angulo, The single-particle microbeam facility at CEA-Saclay, Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms, vol.267, pp.1999-2002, 2009.
DOI : 10.1016/j.nimb.2009.03.040

M. J. Kim, S. Pal, Y. K. Tak, K. Lee, T. K. Yang et al., Determination of the dose-depth distribution of proton beam using resazurin assay in vitro and diode laser-induced fluorescence detection, Anal Chim Acta, vol.593, issue.2, pp.214-237, 2007.

S. Klein, A. Sommer, L. Distel, W. Neuhuber, and C. Kryschi, Superparamagnetic iron oxide nanoparticles as radiosensitizer via enhanced reactive oxygen species formation, Biochem Biophys Res Commun, vol.425, issue.2, pp.393-400, 2012.
DOI : 10.1016/j.bbrc.2012.07.108

K. Kobayashi, N. Usami, E. Porcel, S. Lacombe, L. Sech et al., Enhancement of radiation effect by heavy elements, Mutat Res, vol.704, issue.1, pp.123-154, 2010.

J. Kovacik and P. Babula, Fluorescence microscopy as a tool for visualization of metal-induced oxidative stress in plants, Acta Physiol Plant, vol.39, issue.8, 2017.

A. Kumar, A. Adhikary, L. Shamoun, and M. D. Sevilla, Do solvated electrons (e ? aq ) reduce DNA bases? A Gaussian 4 and density functional theory-molecular dynamics study, Early developments in radiation chemistry, vol.120, pp.2115-2138, 1989.

S. Lacombe, E. Porcel, and E. Scifoni, Particle therapy and nanomedicine: state of art and research perspectives, Cancer Nanotechnol, vol.8, issue.1, p.9, 2017.

S. Lamart, B. W. Miller, A. Van-der-meeren, A. Tazrart, J. F. Angulo et al., Actinide bioimaging in tissues: comparison of emulsion and solid track autoradiography techniques with the iQID camera, PLoS ONE, vol.12, issue.10, p.18, 2017.

T. Landberg and P. Nilsson, Prescribing, recording, and reporting external beam therapy a summary of ICRU Reports nos 29, 50, 62 and 71, Medical physics in the Baltic States: proceedings of the 7th international conference on medical physics, p.43, 2009.

J. A. Laverne and R. H. Schuler, Track effects in radiation chemistry: production of hydroperoxy radical in the radiolysis of water by high-LET nickel-58 ions, J Phys Chem, vol.91, issue.26, pp.6560-6563, 1987.

J. A. Laverne and R. H. Schuler, Track effects in the radiolysis of water-HO 2 · production by 200-800-MeV carbon-ions, J Phys Chem, vol.96, issue.18, pp.7376-7384, 1992.

L. Caer and S. , Water radiolysis: influence of oxide surfaces on H2 production under ionizing radiation, Water, vol.3, issue.1, pp.235-53, 2011.

P. Lefrancois, V. Vajrala, I. B. Arredondo, B. Goudeau, T. Doneux et al., Direct oxidative pathway from amplex red to resorufin revealed by in situ confocal imaging, Phys Chem Chem Phys, vol.18, issue.37, pp.25817-25839, 2016.

P. Lertnaisat, Y. Katsumura, S. Mukai, R. Umehara, Y. Shimizu et al., Simulation of the inhibition of water alpha-radiolysis via H 2 addition, J Nucl Sci Technol, vol.51, issue.9, pp.1087-95, 2014.

V. Letilly, S. Pin, B. Hickel, and B. Alpert, Hydrated electrons diffusion inside the protein matrix, J Am Chem Soc, vol.119, issue.44, pp.10810-10814, 1997.

Y. T. Lin, S. J. Mcmahon, M. Scarpelli, H. Paganetti, and J. Schuemann, Comparing gold nano-particle enhanced radiotherapy with protons, megavoltage photons and kilovoltage photons: a Monte Carlo simulation, Phys Med Biol, vol.59, issue.24, pp.7675-89, 2014.

Y. Lorat, C. U. Brunner, S. Schanz, J. B. Taucher-scholz, G. Rübe et al., Nanoscale analysis of clustered DNA damage after high-LET irradiation by quantitative electron microscopy-the heavy burden to repair, DNA Repair, vol.28, pp.93-106, 2015.

J. Ma, F. R. Wang, and M. Mostafavi, Ultrafast chemistry of water radical cation, H 2 O ·+ , in aqueous solutions, Molecules, vol.23, issue.2, p.44, 2018.

T. Maeyama, S. Yamashita, M. Taguchi, G. Baldacchino, L. Sihver et al., Production of a fluorescence probe in ion-beam radiolysis of aqueous coumarin-3-carboxylic acid solution-2: effects of nuclear fragmentation and its simulation with PHITS, Radiat Phys Chem, vol.80, issue.12, pp.1352-1359, 2011.

T. Maeyama, S. Yamashita, G. Baldacchino, M. Taguchi, A. Kimura et al., Production of a fluorescence probe in ion-beam radiolysis of aqueous coumarin-3-carboxylic acid solution-1: beam quality and concentration dependences, Radiat Phys Chem, vol.80, issue.4, pp.535-544, 2011.

. Baldacchino, Cancer Nano, vol.10, p.3, 2019.

J. L. Magee, Introduction: Milton Burton, Godfather of radiation chemistry 4, vol.32, pp.90004-90009, 1902.

J. L. Magee and A. Chatterjee, Kinetics of nonhomogenoeous processes. a practical introduction for chemists, biologists, physicists, and materials scientists, pp.171-214, 1987.

S. Mckinnon, S. Guatelli, S. Incerti, V. Ivanchenko, K. Konstantinov et al., Local dose enhancement of proton therapy by ceramic oxide nanoparticles investigated with Geant4 simulations, Phys Med, vol.32, issue.12, pp.1584-93, 2016.

J. Meesungnoen and J. P. Jay-gerin, Effect of multiple ionization on the yield of H 2 O 2 produced in the radiolysis of aqueous 0.4 M H 2 SO 4 solutions by high-LET 12 C 6+ and 20 Ne 9+ ions, Radiat Res, vol.164, issue.5, pp.688-94, 2005.

J. Meesungnoen and J. P. Jay-gerin, High-LET ion radiolysis of water: oxygen production in tracks, Radiat Res, vol.171, issue.3, pp.379-86, 2009.

M. Misawa and J. Takahashi, Generation of reactive oxygen species induced by gold nanoparticles under x-ray and UV irradiations, Nanomed Nanotechnol Biol Med, vol.7, issue.5, pp.18-22, 1957.

H. Nikjoo, P. O'neill, W. E. Wilson, and D. T. Goodhead, Computational approach for determining the spectrum of DNA damage induced by ionizing radiation, Radiat Res, vol.156, issue.5, pp.577-83, 2001.

H. Nikjoo, S. Uehara, D. Emfietzoglou, and F. A. Cucinotta, Track-structure codes in radiation research, Radiat Meas, vol.41, issue.9, pp.1052-74, 2006.

M. Quintiliani, The oxygen effect in radiation inactivation of DNA and enzymes, Int J Radiat Biol Relat Stud Phys Chem Med, vol.50, issue.4, p.81, 1986.

S. Rockwell, I. T. Dobrucki, E. Y. Kim, S. T. Marrison, and V. T. Vu, Hypoxia and radiation therapy: past history, ongoing research, and future promise, Curr Mol Med, vol.9, issue.4, pp.442-58, 2009.

S. Rosa, C. Connolly, G. Schettino, K. T. Butterworth, and K. M. Prise, Biological mechanisms of gold nanoparticle radiosensitization, Cancer Nanotechnol, vol.8, issue.1, 2017.

O. Roth, B. Dahlgren, and J. A. Laverne, Radiolysis of water on ZrO 2 nanoparticles, J Phys Chem C, vol.116, issue.33, pp.17619-17643, 2012.

E. Sage and N. Shikazono, Radiation-induced clustered DNA lesions: repair and mutagenesis, Free Radic Biol Med, vol.107, pp.125-160, 2017.

R. H. Schuler, L. K. Patterson, and E. Janata, Yield for the scavenging of OH radicals in the radiolysis of N 2 O-saturated aqueoussolutions, J Phys Chem, vol.84, issue.16, pp.2088-2097, 1980.

J. W. Slot and H. J. Geuze, Sizing of protein A-colloidal gold probes for immunoelectron microscopy, J Cell Biol, vol.90, pp.533-539, 1981.

&. Solov, Nanoscale insights into ion-beam cancer therapy, 2017.

J. Spinks and R. J. Woods, Bethesda: International Commission on radiation Units and Measurements, ICRU Report, vol.37, 1984.

E. Surdutovich, &. Solov, and . Av, Shock wave initiated by an ion passing through liquid water, Phys Rev E, vol.82, issue.5, 2010.
DOI : 10.1103/physreve.82.051915

R. H. Thomlinson and L. H. Gray, The histological structure of some human lung cancers and the possible implications for radiotherapy, Br J Cancer, vol.9, issue.4, pp.539-588, 1955.

H. N. Tran, M. Karamitros, V. N. Ivanchenko, S. Guatelli, S. Mckinnon et al., Geant4 Monte Carlo simulation of absorbed dose and radiolysis yields enhancement from a gold nanoparticle under MeV proton irradiation, Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms, vol.373, pp.126-165, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01401966

V. Sonntag and C. , The chemical basis of radiation biology, 1987.

V. Sonntag and C. , Free-radical-induced DNA damage and its repair. A chemical perspective, 2006.

V. Wasselin-trupin, G. Baldacchino, S. Bouffard, and B. Hickel, Hydrogen peroxide yields in water radiolysis by high-energy ion beams at constant LET, Radiat Phys Chem, vol.65, issue.1, pp.53-61, 2002.
DOI : 10.1016/s0969-806x(01)00682-x

W. K. Weyrather and G. Kraft, RBE of carbon ions: experimental data and the strategy of RBE calculation for treatment planning, Radiother Oncol, vol.73, issue.04, pp.80041-80041, 2004.

J. F. Wishart and B. Rao, Recent trends in radiation chemistry, 2010.
DOI : 10.1142/7413

J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, SRIM-The stopping and range of ions in matter, Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms, vol.268, pp.1818-1841, 2010.

J. D. Zimbrick, Radiation chemistry and the radiation research society: a history from the beginning, Radiat Res, vol.158, issue.2, pp.127-167, 2002.