R. Coriat, J. Alexandre, C. Nicco, L. Quinquis, E. Benoit et al., Treatment of oxaliplatin-induced peripheral neuropathy by intravenous mangafodipir, J Clin Invest, vol.124, pp.262-72, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01704386

H. Masuda, T. Tanaka, and U. Takahama, Cisplatin generates superoxide anion by interaction with DNA in a cell-free system, Biochem Biophys Res Commun, vol.203, pp.1175-80, 1994.

E. Raymond, S. Faivre, J. M. Woynarowski, and S. G. Chaney, Oxaliplatin: mechanism of action and antineoplastic activity, Semin Oncol, vol.25, pp.4-12, 1998.

A. Canta, E. Pozzi, and V. A. Carozzi, Mitochondrial dysfunction in chemotherapyinduced peripheral neuropathy (CIPN) toxics2015, vol.3, pp.198-223

N. Egashira, S. Hirakawa, T. Kawashiri, T. Yano, H. Ikesue et al., Mexiletine reverses oxaliplatin-induced neuropathic pain in rats, J Pharmacol Sci, vol.112, pp.473-479, 2010.

H. Adelsberger, S. Quasthoff, J. Grosskreutz, A. Lepier, F. Eckel et al., The chemotherapeutic oxaliplatin alters voltage-gated Na(þ) channel kinetics on rat sensory neurons, Eur J Pharmacol, vol.406, pp.25-32, 2000.

A. Kagiava, A. Tsingotjidou, C. Emmanouilides, and G. Theophilidis, The effects of oxaliplatin, an anticancer drug, on potassium channels of the peripheral myelinated nerve fibres of the adult rat, Neurotoxicology, vol.29, pp.1100-1106, 2008.

C. Schulze, M. Mcgowan, S. E. Jordt, and B. E. Ehrlich, Prolonged oxaliplatin exposure alters intracellular calcium signaling: a new mechanism to explain oxaliplatin-associated peripheral neuropathy, Clin Colorectal Cancer, vol.10, pp.126-159, 2011.

C. Siau and G. J. Bennett, Dysregulation of cellular calcium homeostasis in chemotherapy-evoked painful peripheral neuropathy, Anesth Analg, vol.102, pp.1485-90, 2006.

A. Laurent, C. Nicco, C. Ch-ereau, C. Goulvestre, J. Alexandre et al., Controlling tumor growth by modulating endogenous production of reactive oxygen species, Cancer Res, vol.65, pp.948-56, 2005.

E. Gamelin, L. Gamelin, L. Bossi, and S. Quasthoff, Clinical aspects and molecular basis of oxaliplatin neurotoxicity: current management and development of preventive measures, Semin Oncol, vol.29, pp.21-33, 2002.

V. A. Carozzi, P. Marmiroli, and G. Cavaletti, The role of oxidative stress and antioxidant treatment in platinum-induced peripheral neurotoxicity, Curr Cancer Drug Targets, vol.10, pp.670-82, 2010.

V. A. Carozzi, A. Canta, and A. Chiorazzi, Chemotherapy-induced peripheral neuropathy: what do we know about mechanisms?, Neurosci Lett, vol.596, pp.90-107, 2015.

R. Nassini, M. Gees, S. Harrison, D. Siena, G. Materazzi et al., Oxaliplatin elicits mechanical and cold allodynia in rodents via TRPA1 receptor stimulation, Pain, vol.152, pp.1621-1652, 2011.

S. C. Lim, J. E. Choi, H. S. Kang, and S. I. Han, Ursodeoxycholic acid switches oxaliplatin-induced necrosis to apoptosis by inhibiting reactive oxygen species production and activating p53-caspase 8 pathway in HepG2 hepatocellular carcinoma, Int J Cancer, vol.126, pp.1582-95, 2010.

E. K. Joseph, X. Chen, O. Bogen, and J. D. Levine, Oxaliplatin acts on IB4-positive nociceptors to induce an oxidative stress-dependent acute painful peripheral neuropathy, J Pain, vol.9, pp.463-72, 2008.

H. Zheng, W. H. Xiao, and G. J. Bennett, Functional deficits in peripheral nerve mitochondria in rats with paclitaxel-and oxaliplatin-evoked painful peripheral neuropathy, Exp Neurol, vol.232, pp.154-61, 2011.

J. M. Extra, M. Marty, S. Brienza, and J. L. Misset, Pharmacokinetics and safety profile of oxaliplatin, Semin Oncol, vol.25, pp.13-22, 1998.

J. T. Hartmann and H. P. Lipp, Toxicity of platinum compounds, Expert Opin Pharmacother, vol.4, pp.889-901, 2003.

Y. Li, P. K. Li, M. J. Roberts, R. C. Arend, R. S. Samant et al., Multitargeted therapy of cancer by niclosamide: a new application for an old drug, Cancer Lett, vol.349, pp.8-14, 2014.

S. You, R. Li, D. Park, M. Xie, G. L. Sica et al., Disruption of STAT3 by niclosamide reverses radioresistance of human lung cancer, Mol Cancer Ther, vol.13, pp.606-622, 2014.

S. L. Lee, A. R. Son, J. Ahn, and J. Y. Song, Niclosamide enhances ROS-mediated cell death through c-Jun activation, Biomed Pharmacother, vol.68, pp.619-643, 2014.

S. Toyama, N. Shimoyama, Y. Ishida, T. Koyasu, H. H. Szeto et al., Characterization of acute and chronic neuropathies induced by oxaliplatin in mice and differential effects of a novel mitochondria-targeted antioxidant on the neuropathies, Anesthesiology, vol.120, pp.459-73, 2014.

L. S. Miraucourt, X. Moisset, R. Dallel, and D. L. Voisin, Glycine inhibitory dysfunction induces a selectively dynamic, morphine-resistant, and neurokinin 1 receptor-independent mechanical allodynia, J Neurosci, vol.29, pp.2519-2546, 2009.

L. E. Ta, P. A. Low, and A. J. Windebank, Mice with cisplatin and oxaliplatin-induced painful neuropathy develop distinct early responses to thermal stimuli, Mol Pain, vol.5, p.9, 2009.

A. Areti, V. G. Yerra, V. Naidu, and A. Kumar, Oxidative stress and nerve damage: role in chemotherapy induced peripheral neuropathy, Redox Biol, vol.2, pp.289-95, 2014.

M. C. Kiernan, D. Burke, K. V. Andersen, and H. Bostock, Multiple measures of axonal excitability: a new approach in clinical testing, Muscle Nerve, vol.23, pp.399-409, 2000.

A. V. Krishnan, C. S. Lin, S. B. Park, and M. C. Kiernan, Assessment of nerve excitability in toxic and metabolic neuropathies, J Peripher Nerv Syst, vol.13, pp.7-26, 2008.

P. J. Austin and G. Moalem-taylor, The neuro-immune balance in neuropathic pain: involvement of inflammatory immune cells, immune-like glial cells and cytokines, J Neuroimmunol, vol.229, pp.26-50, 2010.

A. Preitschopf, K. Li, D. Schorghofer, K. Kinslechner, B. Schutz et al., mTORC1 is essential for early steps during Schwann cell differentiation of amniotic fluid stem cells and regulates lipogenic gene expression, PLoS One, vol.9, p.107004, 2014.

Y. A. Shen, Y. Chen, D. Q. Dao, S. R. Mayoral, L. Wu et al., Phosphorylation of LKB1/Par-4 establishes Schwann cell polarity to initiate and control myelin extent, Nat Commun, vol.5, p.4991, 2014.

C. J. Zhang, H. Zhai, Y. Yan, J. Hao, M. S. Li et al., Glatiramer acetate ameliorates experimental autoimmune neuritis, Immunol Cell Biol, vol.92, pp.164-173, 2014.

M. C. Morales, G. Perez-yarza, N. Nieto-rementeria, M. D. Boyano, M. Jangi et al., Intracellular glutathione levels determine cell sensitivity to apoptosis induced by the antineoplasic agent N-(4-hydroxyphenyl) retinamide, Anticancer Res, vol.25, pp.1945-51, 2005.

J. Alexandre, C. Nicco, C. Ch-ereau, A. Laurent, B. Weill et al., Improvement of the therapeutic index of anticancer drugs by the superoxide dismutase mimic mangafodipir, J Natl Cancer Inst, vol.98, pp.236-280, 2006.

D. Trachootham, J. Alexandre, and P. Huang, Targeting cancer cells by ROSmediated mechanisms: a radical therapeutic approach?, Nat Rev Drug Discov, vol.8, pp.579-91, 2009.

M. Gallorini, C. Petzel, C. Bolay, K. A. Hiller, A. Cataldi et al., Activation of the Nrf2-regulated antioxidant cell response inhibits HEMAinduced oxidative stress and supports cell viability, Biomaterials, vol.56, pp.114-142, 2015.

S. Gonzalez-reyes, S. Guzman-beltran, O. N. Medina-campos, and J. Pedraza-chaverri, Curcumin pretreatment induces Nrf2 and an antioxidant response and prevents hemin-induced toxicity in primary cultures of cerebellar granule neurons of rats, Oxid Med Cell Longev, p.801418, 2013.

J. C. Belrose, Y. F. Xie, L. J. Gierszewski, J. F. Macdonald, and M. F. Jackson, Loss of glutathione homeostasis associated with neuronal senescence facilitates TRPM2 channel activation in cultured hippocampal pyramidal neurons, Mol Brain, vol.5, p.11, 2012.

J. S. Bains and C. A. Shaw, Neurodegenerative disorders in humans: the role of glutathione in oxidative stress-mediated neuronal death, Brain Res Brain Res Rev, vol.25, pp.335-58, 1997.

M. Sagara, J. Satoh, R. Wada, S. Yagihashi, K. Takahashi et al., Inhibition of development of peripheral neuropathy in streptozotocininduced diabetic rats with N-acetylcysteine, Diabetologia, vol.39, pp.263-272, 1996.

S. Cascinu, V. Catalano, L. Cordella, R. Labianca, P. Giordani et al., Neuroprotective effect of reduced glutathione on oxaliplatin-based chemotherapy in advanced colorectal cancer: a randomized, double-blind, placebo-controlled trial, J Clin Oncol, vol.20, pp.3478-83, 2002.

J. Boyette-davis and P. M. Dougherty, Protection against oxaliplatin-induced mechanical hyperalgesia and intraepidermal nerve fiber loss by minocycline, Exp Neurol, vol.229, pp.353-360, 2011.

W. H. Xiao, H. Zheng, and G. J. Bennett, Characterization of oxaliplatin-induced chronic painful peripheral neuropathy in the rat and comparison with the neuropathy induced by paclitaxel, Neuroscience, vol.203, pp.194-206, 2012.

L. Di-cesare-mannelli, A. Pacini, L. Micheli, A. Tani, M. Zanardelli et al., Glial role in oxaliplatin-induced neuropathic pain, Exp Neurol, vol.261, pp.22-33, 2014.

P. A. Low, K. K. Nickander, and H. J. Tritschler, The roles of oxidative stress and antioxidant treatment in experimental diabetic neuropathy, Diabetes, vol.46, pp.38-42, 1997.

X. Gao, H. K. Kim, J. M. Chung, and K. Chung, Reactive oxygen species (ROS) are involved in enhancement of NMDA-receptor phosphorylation in animal models of pain, Pain, vol.131, pp.262-71, 2007.

D. Siniscalco, C. Fuccio, C. Giordano, F. Ferraraccio, E. Palazzo et al., Role of reactive oxygen species and spinal cord apoptotic genes in the development of neuropathic pain, Pharmacol Res, vol.55, pp.158-66, 2007.

M. S. Hamada and M. H. Kole, Myelin loss and axonal ion channel adaptations associated with gray matter neuronal hyperexcitability, J Neurosci, vol.35, pp.7272-86, 2015.

R. H. Wilson, T. Lehky, R. R. Thomas, M. G. Quinn, M. K. Floeter et al., Acute oxaliplatin-induced peripheral nerve hyperexcitability, J Clin Oncol, vol.20, pp.1767-74, 2002.

K. J. Smith and S. M. Hall, Factors directly affecting impulse transmission in inflammatory demyelinating disease: recent advances in our understanding, Curr Opin Neurol, vol.14, pp.289-98, 2001.

C. Mattei, J. Molgo, and E. Benoit, Involvement of both sodium influx and potassium efflux in ciguatoxin-induced nodal swelling of frog myelinated axons, Neuropharmacology, vol.85, pp.417-443, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01178834

G. Wang and S. M. Thompson, Maladaptive homeostatic plasticity in a rodent model of central pain syndrome: thalamic hyperexcitability after spinothalamic tract lesions, J Neurosci, vol.28, pp.11959-69, 2008.

T. M. Cunha, W. A. Verri, J. S. Silva, S. Poole, F. Q. Cunha et al., A cascade of cytokines mediates mechanical inflammatory hypernociception in mice, Proc Natl Acad Sci U S A, vol.102, pp.1755-60, 2005.

N. Uceyler, J. P. Rogausch, K. V. Toyka, and C. Sommer, Differential expression of cytokines in painful and painless neuropathies, Neurology, vol.69, pp.42-51, 2007.

L. Tian, L. Ma, T. Kaarela, and Z. Li, Neuroimmune crosstalk in the central nervous system and its significance for neurological diseases, J Neuroinflammation, vol.9, p.155, 2012.

J. Guptarak, S. Wanchoo, J. Durham-lee, Y. Wu, D. Zivadinovic et al., Inhibition of IL-6 signaling: A novel therapeutic approach to treating spinal cord injury pain, Pain, vol.154, pp.1115-1143, 2013.

K. Iwatsuki, T. Arai, H. Ota, S. Kato, T. Natsume et al., Targeting anti-inflammatory treatment can ameliorate injury-induced neuropathic pain, PLoS One, vol.8, p.57721, 2013.

X. Shi, Y. Chen, L. Nadeem, and G. Xu, Beneficial effect of TNF-a inhibition on diabetic peripheral neuropathy, J Neuroinflammation, vol.10, p.69, 2013.