M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, pp.358-433, 1964.

E. Akervik, J. Hoepffner, U. Ehrenstein, and D. S. Henningson, Optimal growth, model 626 reduction and control in a separated boundary-layer flow using global eigenmodes, p.627

F. Mech, , vol.579, pp.305-314, 2007.

A. C. Antoulas, D. C. Sorensen, and S. Gugercin, A survey of model reduction methods 629 for large-scale systems, Contemp. Math, vol.280, pp.193-219, 2001.

Z. Bai, Krylov subspace techniques for reduced-order modeling of large-scale dynamical 631 systems, Applied Numerical Mathematics, vol.43, pp.9-44, 2002.

A. Barbagallo, D. Sipp, and P. J. Schmid, Input-output measures for model reduction 633 and closed-loop control: application to global modes, J. Fluid Mech, vol.685, pp.23-53, 2011.

C. Beattie, M. Embree, and J. Rossi, Convergence of restarted Krylov subspaces to 635 invariant subspaces, SIAM J. Matrix Anal. Appl, vol.25, pp.1074-1109, 2001.

C. A. Beattie, M. Embree, and D. C. Sorensen, Convergence of Polynomial Restart, p.637

, Krylov Methods for Eigenvalue Computations, SIAM Review, vol.47, issue.3, pp.492-515, 2005.

, Engineers I: asymptotic methods and perturbation theory, pp.504-533, 1999.

M. Bertin, C. Millet, D. Bouche, and J. Robinet, The role of atmospheric uncertainties 642 on long range propagation of infrasounds, pp.2012-3346, 2012.

T. J. Bridges and P. J. Morris, Differential eigenvalue problems in which the parameter 644 appears nonlinearly, J. of Computational Physics, vol.55, issue.3, pp.437-460, 1984.

J. Candelier, S. L. Dizès, and C. Millet, Shear instability in a stratified fluid when 646 shear and stratification are not aligned, J. Fluid Mech, vol.685, pp.191-201, 2011.

J. Candelier, S. L. Dizès, and C. Millet, Inviscid instability of a stably stratified com-648 pressible boundary layer on an inclined surface, J. Fluid Mech, vol.694, pp.524-539, 2012.

I. P. Chunchuzov, S. N. Kulichkov, O. E. Popov, R. Waxler, and J. Assink, Infrasound 650 scattering from atmospheric anisotropic inhomogeneities, Izv., Atmos. and Ocean. Phys, vol.651, issue.5, pp.540-557, 2011.

I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl

, Math, vol.41, issue.7, pp.909-996, 1988.

J. Delville, L. Ukeiley, L. Cordier, J. P. Bonnet, and M. Glauser, Examination of large-scale structures in a turbulent plane mixing layer. Part 1. Proper orthogonal de-656 composition, J. Fluid Mech, vol.391, pp.91-122, 1999.

D. P. Drob, J. T. Emmert, G. Crowley, J. M. Picone, G. G. Shepherd et al.,

R. J. Hays, M. Niciejewski, C. Y. Larsen, J. W. She, G. Meriwether et al.,

D. P. Jarvis, C. A. Sipler, M. S. Tepley, J. R. O'brien, Q. Bowman et al.,

I. M. Kawamura, R. A. Reid, and . Vincent, An empirical model of the Earth's horizontal 661 wind fields: HWM07, J. of Geophysical Research, vol.113, pp.1-18, 2008.

D. P. Drob, D. Broutman, M. A. Hedlin, N. W. Winslow, and R. G. Gibson, A method 663 for specifying atmospheric gravity wavefields for long-range infrasound propagation cal-664 culations, J. of Geophysical Research, vol.118, issue.10, pp.3933-3943, 2013.

B. Galletti, C. H. Bruneau, L. Zannetti, and A. Iollo, Low-order modelling of laminar 666 flow regimes past a confined square cylinder, J. Fluid Mech, vol.503, pp.161-170, 2004.

A. Hay, J. T. Borggaard, and D. Pelletier, Local improvements to reduced-order models 668 using sensitivity analysis of the proper orthogonal decomposition, J. Fluid Mech, vol.629, pp.41-72, 2009.

A. E. Hedin, E. L. Fleming, A. H. Manson, F. J. Schmidlin, S. K. Avery et al., , p.671

S. J. Franke, G. J. Fraser, T. Tsuda, F. Vial, and R. A. Vincent, Empirical wind model

M. A. Hedlin, C. D. De-groot-hedlin, and D. Drob, A study of infrasound prop-675 agation using dense seismic network recordings of surface explosions, p.676

G. K. Batchelor, H. K. Moffatt, and M. G. Worster, Perspectives in Fluid Dynamics: 678 A collective introduction to Current Research, 2000.

F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt, Computational Ocean, p.681

. Acoustics, , pp.257-322, 1994.

T. Kato, Perturbation Theory for Linear Operators, p.619, 1995.

S. N. Kulichkov, I. P. Chunchuzov, and O. I. Popov, Simulating the influence of an 685 atmospheric fine inhomogeneous structure on long-range propagation of pulsed acoustic 686 signals, Izv., Atmos. and Ocean. Phys, vol.46, issue.1, pp.60-68, 2010.

.. R. Lehoucq, Implicitly Restarted Arnoldi Methods and Subspace Iteration, SIAM 688 J. Matrix Anal. and Appl, vol.23, issue.2, pp.551-562, 2001.

R. B. Lehoucq, On The Convergence Of An Implicitly Restarted Arnoldi Method, p.690

, SIAM J. Matrix Anal. Appl, vol.23, pp.551-562, 1999.

S. G. Mallat, Multiresolution representations and wavelets, Dissertations available 692 from ProQuest, Paper AAI8824767, 1988.

K. Meerbergen and R. B. Morgan, Arnoldi Method with Inexact Cayley Transform in 694

Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, H. Van-der et al., Templates for the Solution 695 of Algebraic Eigenvalue Problems: a Practical Guide, p.343, 2000.

C. Millet, J. C. Robinet, and C. Roblin, On using computational aeroacoustics for long-698 range propagation of infrasounds in realistic atmospheres, Geophysical Research Letters, vol.699, issue.14, p.14814, 2007.

G. R. North, Empirical orthogonal functions and normal modes, J. Atmos. Sci, vol.41, issue.5, pp.879-887, 1984.

A. D. Pierce, Extension of the method of normal modes to sound propagation in an 703 almost stratified medium, J. Acoust. Soc. Am, vol.37, issue.1, pp.19-27, 1965.

J. W. Strutt, revised and 705 enlarged, vol.2, pp.997-1013, 2005.

B. Salimbahrami and B. Lohmann, Order reduction of large scale second-order systems 709 using Krylov subspace methods, Linear Algebra and its Applications, vol.415, issue.2-3, p.710, 2006.

P. E. Srinivasan, D. Morrey, A. J. Bell, J. F. Durudola, E. B. Rudnyi et al., , p.712

. Korvink, Reduced order fully coupled structural acoustic analysis via implicit moment 713 matching, Applied Mathematical Modelling, vol.33, issue.11, pp.4097-4119, 2009.

L. N. Trefethen, The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods, Numerical Linear Algebra, vol.716, pp.351-421, 1997.

.. R. Waxler, A vertical eigenfunction expansion for the propagation of sound in a 718 downward-refracting atmosphere over a complex impedance plane, J. Acoust. Soc. Am, vol.719, issue.6, pp.2540-2552, 2002.

.. R. Waxler, On the use of modal expansions to model broadband propagation in the 721 nighttime boundary layer and other downward refracting atmospheres over lossy ground 722 planes, J. Acoust. Soc. Am, vol.113, issue.4, p.2313, 2003.