R. A. Sheldon and J. M. Woodley, Role of Biocatalysis in Sustainable Chemistry, Chem. Rev, vol.118, pp.801-838, 2018.

U. T. Bornscheuer, Engineering the third wave of biocatalysis, Nature, vol.485, pp.185-194, 2012.

A. S. Wells, G. L. Finch, P. C. Michels, and J. W. Wong, Use of Enzymes in the Manufacture of Active Pharmaceutical Ingredients. A Science and Safety-Based Approach To Ensure Patient Safety and Drug Quality, Org. Process Res. Dev, vol.16, 1986.

H. Sun, H. Zhang, E. L. Ang, and H. Zhao, Biocatalysis for the synthesis of pharmaceuticals and pharmaceutical intermediates, Bioorg. Med. Chem, vol.16, pp.1275-1284, 2018.

R. Scientific, , vol.8, 2018.

J. Wan, L. Gan, and Y. Liu, Transition metal-catalyzed C-H bond functionalization in multicomponent reactions: a tool toward molecular diversity, Org. Biomol. Chem, vol.15, pp.9031-9043, 2017.

J. C. Lewis, P. S. Coelho, and F. H. Arnold, Enzymatic functionalization of carbon-hydrogen bonds, Chem. Soc. Rev, vol.40, 2003.

J. A. Gerlt and P. C. Babbitt, Divergent evolution of enzymatic function: mechanistically diverse superfamilies and functionally distinct suprafamilies, Annu. Rev. Biochem, vol.70, pp.209-246, 2001.

R. P. Hausinger, FeII/alpha-ketoglutarate-dependent hydroxylases and related enzymes, Crit. Rev. Biochem. Mol. Biol, vol.39, pp.21-68, 2004.
DOI : 10.1080/10409230490440541

N. P. Dunham, Two Distinct Mechanisms for C-C Desaturation by Iron(II)-and 2-(Oxo)glutarate-Dependent Oxygenases: Importance of ?-Heteroatom Assistance, J. Am. Chem. Soc, vol.140, pp.7116-7126, 2018.

A. Mukherjee, Oxygen activation at mononuclear nonheme iron centers: a superoxo perspective, Inorg. Chem, vol.49, pp.3618-3628, 2010.

A. J. Mitchell, Visualizing the Reaction Cycle in an Iron(II)-and 2-(Oxo)-glutarate-Dependent Hydroxylase, J. Am. Chem. Soc, vol.139, pp.13830-13836, 2017.

S. Martinez and R. P. Hausinger, Catalytic Mechanisms of Fe(II)-and 2-Oxoglutarate-dependent Oxygenases, J. Biol. Chem, vol.290, pp.20702-20711, 2015.

L. Wu, S. Meng, and G. Tang, Ferrous iron and ?-ketoglutarate-dependent dioxygenases in the biosynthesis of microbial natural products, Biochim. Biophys. Acta, vol.1864, pp.453-470, 2016.

L. Roper and G. Grogan, Chapter 8 -Biocatalysis for Organic Chemists: Hydroxylations, Organic Synthesis Using Biocatalysis, pp.213-241, 2016.

M. Hibi and J. Ogawa, Characteristics and biotechnology applications of aliphatic amino acid hydroxylases belonging to the Fe(II)/?-ketoglutarate-dependent dioxygenase superfamily, Appl. Microbiol. Biotechnol, vol.98, pp.3869-3876, 2014.

D. Baud, Synthesis of Mono-and Dihydroxylated Amino Acids with New ?-Ketoglutarate-Dependent Dioxygenases: Biocatalytic Oxidation of C-H Bonds, ChemCatChem, vol.6, pp.3012-3017, 2014.
URL : https://hal.archives-ouvertes.fr/cea-01591870

V. Helmetag, S. A. Samel, M. G. Thomas, M. A. Marahiel, and L. Essen, Structural basis for the erythro-stereospecificity of the L-arginine oxygenase VioC in viomycin biosynthesis, FEBS J, vol.276, pp.3669-3682, 2009.

Z. Zhang, Crystal structure of a clavaminate synthase-Fe(II)-2-oxoglutarate-substrate-NO complex: evidence for metal centered rearrangements, FEBS Lett, vol.517, pp.7-12, 2002.

M. Strieker, F. Kopp, C. Mahlert, L. Essen, and M. A. Marahiel, Mechanistic and structural basis of stereospecific Cbetahydroxylation in calcium-dependent antibiotic, a daptomycin-type lipopeptide, ACS Chem. Biol, vol.2, pp.187-196, 2007.

R. D. Finn, 2017-beyond protein family and domain annotations, vol.45, pp.190-199, 2017.

J. Center-for, Crystal structure of a bsmA homolog (Mpe_A2762) from Methylobium petroleophilum PM1 at 1.91 A resolution, 2010.

Q. Xu, Crystal structure of a member of a novel family of dioxygenases (PF10014) reveals a conserved cupin fold and active site, Proteins, vol.82, pp.164-170, 2014.

H. M. Qin, Crystal Structure of a Novel N-Substituted L-Amino Acid Dioxygenase in complex with alpha-KG from Burkholderia ambifaria AMMD, 2013.

P. Lukat, W. Blankenfeldt, and R. Mueller, GriE in complex with cobalt, alpha-ketoglutarate and l-leucine, 2017.

J. A. Gerlt, Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST): A web tool for generating protein sequence similarity networks, Biochim. Biophys. Acta, vol.1854, pp.1019-1037, 2015.

D. Baud, Biocatalytic Approaches towards the Synthesis of Chiral Amino Alcohols from Lysine: Cascade Reactions Combining alpha-Keto Acid Oxygenase Hydroxylation with Pyridoxal Phosphate-Dependent Decarboxylation, Adv. Synth. Catal, vol.359, pp.1563-1569, 2017.

N. Furnham, N. L. Dawson, S. A. Rahman, J. M. Thornton, and C. A. Orengo, Large-Scale Analysis Exploring Evolution of Catalytic Machineries and Mechanisms in Enzyme Superfamilies, J. Mol. Biol, vol.428, pp.253-267, 2016.

K. Bastard, Revealing the hidden functional diversity of an enzyme family, Nat. Chem. Biol, vol.10, pp.42-49, 2014.

R. C. De-melo-minardi, K. Bastard, and F. Artiguenave, Identification of subfamily-specific sites based on active sites modeling and clustering, Bioinformatics, vol.26, pp.3075-3082, 2010.

S. Sacquin-mora, Bridging Enzymatic Structure Function via Mechanics: A Coarse-Grain Approach, Methods Enzymol, vol.578, pp.227-248, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01451158

Z. Zhang, Structural origins of the selectivity of the trifunctional oxygenase clavaminic acid synthase, Nat. Struct. Biol, vol.7, pp.127-133, 2000.

C. Chang, Biosynthesis of Streptolidine Involved Two Unexpected Intermediates Produced by a Dihydroxylase and a Cyclase through Unusual Mechanisms, Angew. Chem. Int. Ed Engl, vol.126, pp.1974-1979, 2014.

I. J. Clifton, Structural studies on 2-oxoglutarate oxygenases and related double-stranded ?-helix fold proteins, J. Inorg. Biochem, vol.100, pp.644-669, 2006.

T. Haliloglu and I. Bahar, Adaptability of protein structures to enable functional interactions and evolutionary implications, Curr. Opin. Struct. Biol, vol.35, pp.17-23, 2015.

A. Kreimeyer, Identification of the last unknown genes in the fermentation pathway of lysine, J. Biol. Chem, vol.282, pp.7191-7197, 2007.

W. X. Kabsch, Acta Crystallogr. D Biol. Crystallogr, vol.66, pp.125-132, 2010.

P. Emsley, B. Lohkamp, W. G. Scott, and K. Cowtan, Features and development of Coot, Acta Crystallogr. D Biol. Crystallogr, vol.66, pp.486-501, 2010.

G. M. Sheldrick, A short history of SHELX, Acta Crystallogr. A, vol.64, pp.112-122, 2008.

A. J. Mccoy, Phasercrystallographic software, J. Appl. Crystallogr, vol.40, pp.658-674, 2007.

K. Cowtan, Recent developments in classical density modification, Acta Crystallogr. D Biol. Crystallogr, vol.66, pp.470-478, 2010.

K. Cowtan, TheBuccaneersoftware for automated model building. 1. Tracing protein chains, Acta Crystallogr. D Biol. Crystallogr, vol.62, pp.1002-1011, 2006.

G. Bricogne, E. Blanc, M. Brandl, C. Flensburg, and P. Keller, BUSTER version 2.11. 2. Cambridge, 2011.

I. J. Tickle, , 2017.

S. Salentin, S. Schreiber, J. Haupt, V. Adasme, M. F. Schroeder et al., PLIP: fully automated protein-ligand interaction profiler, Nucleic Acids Res, vol.43, pp.443-447, 2015.

S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler, PISA -A Platform and Programming Language Independent Interface for Search Algorithms, Lecture Notes in Computer Science, pp.494-508, 2003.

R. J. Read, A new generation of crystallographic validation tools for the protein data bank, Structure, vol.19, pp.1395-1412, 2011.

R. Scientific, , vol.8, 2018.