W. Achouak, S. Conrod, V. Cohen, and T. Heulin, Phenotypic variation of Pseudomonas brassicacearum 521 as a plant root-colonization strategy, Mol. Plant. Microbe Interact, vol.17, pp.872-879, 2004.

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, Basic local alignment search tool, 1990.

, Mol. Biol, vol.215, pp.403-410

H. P. Bais, T. L. Weir, L. G. Perry, S. Gilroy, and J. M. Vivanco, The role of root exudates in rhizosphere 525 interactions with plants and other organisms, Annu. Rev. Plant Biol, vol.57, pp.233-266, 2006.

A. Barberán, S. T. Bates, E. O. Casamayor, and N. Fierer, Using network analysis to explore co-occurrence 527 patterns in soil microbial communities, ISME J, vol.6, pp.343-351, 2012.

R. D. Bardgett, T. C. Streeter, and R. Bol, Soil microbes compete effectively with plants for organic-nitrogen 529 inputs to temperate grasslands, Ecology, vol.84, pp.1277-1287, 2003.

C. Bardon, F. Piola, F. Bellvert, F. Z. Haichar, G. Comte et al., 531 and Poly, F. 2014. Evidence for biological denitrification inhibition (BDI) by plant secondary metabolites

, New Phytol, vol.204, pp.620-630

C. Bardon, F. Poly, F. Piola, M. Pancton, G. Comte et al., Mechanism of biological 534 denitrification inhibition (BDI) : procyanidins induce an allosteric transition of the membrane-bound NO3-535 reductase through membrane alteration, FEMS Microbiol Ecol, vol.18, pp.644-655, 2016.

C. Bardon, F. Poly, F. Z. Haichar, X. Le-roux, L. Simon et al., Biological denitrification inhibition (BDI) with procyanidins induces modification of root traits, growth 538 and N status in Fallopia x bohemica, Soil Biol. Biochem, vol.107, pp.41-49, 2017.

M. Bastian, S. Heymann, and M. Jacomy, Gephi: an open source software for exploring and manipulating 540 networks, International AAAI Conference on Weblogs and Social Media, 2009.

S. T. Bates, D. Berg-lyons, J. G. Caporaso, W. A. Walters, R. Knight et al., Examining the global 542 distribution of dominant archaeal populations in soil, ISME J, vol.5, p.908, 2011.

Y. Benjamini and Y. Hochberg, Controlling the False Discovery Rate: A Practical and powerful approach 544 to multiple testing, J. R. Stat. Soc. Ser. B Methodol, vol.57, pp.289-300, 1995.

G. Bonilla-rosso, L. Wittorf, C. M. Jones, and S. Hallin, Design and evaluation of primers targeting genes 546 encoding NO-forming nitrite reductases: implications for ecological inference of denitrifying communities, 2016.

, Sci. Rep, vol.6, p.39208

S. L. Brauer, A. B. Harbison, M. A. Carson, L. J. Lamit, and N. Basiliko, A Novel Isolate And Widespread, p.549, 2016.

, Abundance Of The Candidate Alphaproteobacterial Order (Ellin 329), 550 FEMS Microbiology Letters, vol.363, p.15

G. J. Bouyoucos, A new, simple, and rapide method for determining the moisture equivalent of 552 soils and the role of soil colloids on this moisture equivalent, Soil Science, vol.27, 1929.

M. Bressan, M. A. Roncato, F. Bellvert, G. Comte, F. Z. Haichar et al., Exogenous 554 glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots, 2009.

, ISME J, vol.3, pp.1243-1257

D. Bulgarelli, M. Rott, K. Schlaeppi, E. V. Themaat, . Van et al., , p.557

R. Reinhardt and E. Schmelzer, Revealing structure and assembly cues for Arabidopsis root-558 inhabiting bacterial microbiota, Nature, vol.488, p.91, 2012.

D. Bulgarelli, R. Garrido-oter, P. C. Münch, A. Weiman, J. Dröge et al., , p.560

P. Lefert, Structure and function of the bacterial root microbiota in wild and domesticated barley, Cell 561 Host Microbe, vol.17, pp.392-403, 2015.

J. G. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman et al., , p.563

J. K. Goodrich and J. I. Gordon, QIIME allows analysis of high-throughput community sequencing 564 data, Nat. Methods, vol.7, pp.335-336, 2010.

T. B. Coplen, Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio 566 measurement results, Rapid Commun. Mass Spectrom, vol.17, pp.2538-2560, 2011.

D. Coskun, D. T. Britto, W. Shi, and H. J. Kronzucker, Nitrogen transformations in modern agriculture and 568 the role of biological nitrification inhibition, Nat. Plants, vol.3, p.17074, 2017.

H. Daims, E. V. Lebedeva, P. Pjevac, P. Han, C. Herbold et al., , p.570

J. Vierheilig and A. Bulaev, Complete nitrification by Nitrospira bacteria, Nature, vol.528, pp.504-509, 2015.

N. Fierer, M. A. Bradford, J. , and R. B. , Toward an ecological classification of soil bacteria, Ecology, vol.572, pp.1354-1364, 2007.

K. Gkarmiri, S. Mahmood, A. Ekblad, S. Alström, N. Högberg et al., Identifying the active 574 microbiome associated with roots and rhizosphere soil of oilseed rape, Appl. Environ. Microbiol, vol.83, pp.1938-575, 2017.

J. P. Guyonnet, F. Vautrin, G. Meiffren, C. Labois, A. A. Cantarel et al., The effects of plant nutritional strategy on soil microbial denitrification activity through rhizosphere 578 primary metabolites, FEMS Microbiol. Ecol, vol.93, 2017.

F. Z. Haichar, C. Marol, O. Berge, J. I. Rangel-castro, J. I. Prosser et al., Plant host habitat and root exudates shape soil bacterial community structure, ISME J, vol.2, pp.1221-1230, 2008.

F. Z. Haichar, M. A. Roncato, A. , and W. , Stable isotope probing of bacterial community structure and 582 gene expression in the rhizosphere of Arabidopsis thaliana, FEMS Microbiol. Ecol, vol.81, pp.291-302, 2012.

F. Z. Haichar, S. Fochesato, A. , and W. , Host plant specific control of 2,4-diacetylphloroglucinol 584 production in the rhizosphere, Agronomy, vol.3, pp.621-631, 2013.

F. Z. Haichar, C. Santaella, T. Heulin, A. , and W. , , 2014.

, Soil Biol. Biochem, vol.77, pp.69-80

S. Henry, E. Baudoin, J. C. Lopez-gutierrez, F. Martin-laurent, A. Baumann et al., Quantification 588 of denitrifying bacteria in soils by nirK gene targeted real-time PCR, Journal. Microbiological. Methods, vol.59, pp.327-589, 2004.

S. Henry, S. Texier, S. Hallet, D. Bru, C. Dambreville et al., , p.591

L. , Disentangling the rhizosphere effect on nitrate reducers and denitrifiers: insight into the role of root 592 exudates, Environ. Microbiol, vol.10, pp.3082-3092, 2008.

L. A. Hug, C. J. Castelle, K. C. Wrighton, B. C. Thomas, I. Sharon et al., , p.594

S. G. Banfield and J. F. , Community genomic analyses constrain the distribution of metabolic traits 595 across the Chloroflexi phylum and indicate roles in sediment carbon cycling, vol.1, p.22, 2013.

F. Ju and T. Zhang, Bacterial assembly and temporal dynamics in activated sludge of a full-scale municipal 597 wastewater treatment plant, ISME J, vol.9, p.683, 2015.

E. Kandeler, K. Deiglmayr, D. Tscherko, D. Bru, and L. Philippot, Abundance of narG, nirS, nirK, and nosZ 599 genes of denitrifying bacteria during primary successions of a glacier foreland, 2006.

. Microbiol, , vol.72, pp.5957-5962

S. Kilian and D. Werner, Enhanced denitrification in plots of N2 fixing faba beans compared to plots of a 602 non-fixing legume and non-legumes, Biol. Fertil. Soils, vol.21, pp.77-83, 1996.

L. Klemedtsson, P. Berg, M. Clarholm, J. Schnürer, and T. Rosswall, Microbial nitrogen transformations 604 in the root environment of barley, Soil Biol. Biochem, vol.19, pp.551-558, 1987.

Y. Kuzyakov and X. Xu, Competition between roots and microorganisms for nitrogen: mechanisms and 606 ecological relevance, New Phytol, vol.198, pp.656-669, 2013.

S. Leininger, T. Urich, M. Schloter, L. Schwark, J. Qi et al., , p.608

C. , Archaea predominate among ammonia-oxidizing prokaryotes in soils, Nature, vol.442, p.806, 2006.

D. S. Lundberg, S. L. Lebeis, S. H. Paredes, S. Yourstone, J. Gehring et al., , p.610

A. Kunin, V. Rio, and T. G. Del, Defining the core Arabidopsis thaliana root microbiome, Nature, vol.611, p.86, 2012.

K. Maeda, A. Spor, V. Edel-hermann, C. Heraud, M. Breuil et al., , p.613

C. Steinberg and L. Philippot, N2O production, a widespread trait in fungi, Sci. Rep, vol.5, p.9697, 2015.

T. Mahmood, R. Ali, K. A. Malik, and S. R. Shamsi, Denitrification with and without maize plants (Zea 615 mays L.) under irrigated field conditions, Biol. Fertil. Soils, vol.24, pp.323-328, 1997.

H. Marschner, Mineral nutrition of higher plants, 1995.

J. M. Mcbeth, B. J. Little, R. I. Ray, K. M. Farrar, E. et al., Neutrophilic iron-oxidizing 618 "Zetaproteobacteria" and mild steel corrosion in nearshore marine environments, Appl. Environ. Microbiol, vol.619, pp.1405-1412, 2011.

P. J. Mcmurdie and S. Holmes, phyloseq: An R Package for Reproducible Interactive Analysis and Graphics 621 of Microbiome Census Data, PLoS ONE, vol.8, p.61217, 2013.

S. Metz, W. Beisker, A. Hartmann, and M. Schloter, Detection methods for the expression of the 623 dissimilatory copper-containing nitrite reductase gene (DnirK) in environmental samples, J. Microbiol. 624 Methods, vol.55, pp.41-50, 2003.

E. Mounier, S. Hallet, D. Chèneby, E. Benizri, Y. Gruet et al., , p.626

S. Martin-laurent and F. , Influence of maize mucilage on the diversity and activity of the denitrifying 627 community, Environ. Microbiol, vol.6, pp.301-312, 2004.

N. Nesi, M. O. Lucas, B. Auger, C. Baron, A. Lécureuil et al., , p.629

I. , R. , and M. , The promoter of the Arabidopsis thaliana BAN gene is active in proanthocyanidin-630 accumulating cells of the Brassica napus seed coat, Plant Cell Rep, vol.28, pp.601-617, 2009.

C. Nguyen, Rhizodeposition of organic C by plants: mechanisms and controls, Agronomie, vol.23, pp.375-396, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00886190

A. K. Patra, L. Abbadie, A. Clays-josserand, V. Degrange, S. J. Grayston et al., , p.633

S. Nazaret, S. Philippot, and L. , Effects of grazing on microbial functional groups involved in soil 634 dynamics, Environ Microbiol, vol.75, issue.6, pp.1005-1021, 2005.

D. Paul, G. Skrzypek, and I. Fórizs, Normalization of measured stable isotopic compositions to isotope 636 reference scales -a review, Rapid Commun. Mass Spectrom, vol.21, pp.3006-3014, 2007.

L. Philippot, Use of functional genes to quantify denitrifiers in the environment, Biochem. Soc. Trans. 638, vol.34, pp.101-103, 2006.

L. Philippot, Denitrifying genes in bacterial and Archaeal genomes, Biochim. Biophys. Acta BBA -Gene, vol.640, 2002.

. Struct and . Expr, , vol.1577, pp.355-376

L. Philippot, S. Piutti, F. Martin-laurent, S. Hallet, and J. C. Germon, Molecular analysis of the nitrate-642 reducing community from unplanted and maize-planted soils, Appl. Environ. Microbiol, vol.68, pp.6121-6128, 2002.

L. Philippot, S. Hallin, and M. Schloter, Ecology of denitrifying prokaryotes in agricultural soil, p.644, 2007.

E. Agronomy, , pp.249-305

S. Radersma and A. L. Smit, Assessing denitrification and N leaching in a field with organic amendments. 646 NJAS -Wagening, J. Life Sci, vol.58, pp.21-29, 2011.

A. R. Ravishankara, J. S. Daniel, and R. W. Portmann, Nitrous oxide (N2O): The dominant ozone-depleting 648 substance emitted in the 21st century, Science, vol.326, pp.123-125, 2009.

C. Van-der-salm, W. De-vries, G. J. Reinds, and N. B. Dise, N leaching across European forests: Derivation 650 and validation of empirical relationships using data from intensive monitoring plots, For. Ecol. Manag, vol.238, pp.81-91, 2007.

J. Saarenheimo, M. A. Tiirola, and A. J. Rissanen, Functional gene pyrosequencing reveals core proteobacterial 653 denitrifiers in boreal lakes, Front Microbiol, vol.6, p.674, 2015.

C. Sanchez and K. Minamisawa, Redundant roles of Bradyrhizobium oligotrophicum Cu-type (NirK) and cd1-655 type (NirS) nitrite reductase genes under denitrifying conditions, FEMS Microbiol Lett, 2018.

K. Schlaeppi, N. Dombrowski, R. G. Oter, E. V. Themaat, . Van et al., Quantitative 658 divergence of the bacterial root microbiota in Arabidopsis thaliana relatives, Proc. Natl. Acad. Sci, vol.111, pp.585-659, 2014.

H. M. Simon, J. A. Dodsworth, and R. M. Goodman, , 2000.

. Microbiol, , vol.2, pp.495-505

A. Spang, A. Poehlein, P. Offre, S. Zumbrägel, S. Haider et al., , p.663

E. V. Rattei and T. , The genome of the ammonia-oxidizing Candidatus Nitrososphaera gargensis: versatility and environmental adaptations, Environ. Microbiol, vol.14, pp.3122-3167, 2012.

J. A. Steele, P. D. Countway, L. Xia, P. D. Vigil, J. M. Beman et al., , p.667

A. C. Schwalbach and M. S. , Marine bacterial, archaeal and protistan association networks reveal 668 ecological linkages, ISME J, vol.5, p.1414, 2011.

T. C. Streeter, R. Bol, and R. D. Bardgett, Amino acids as a nitrogen source in temperate upland grasslands: 670 the use of dual labelled (13C, 15N) glycine to test for direct uptake by dominant grasses, 2000.

, Mass Spectrom, vol.14, pp.1351-1355

B. H. Svensson, L. Klemedtsson, S. Simkins, K. Paustian, and T. Rosswall, Soil denitrification in three 673 cropping systems characterized by differences in nitrogen and carbon supply, Plant Soil, vol.138, pp.257-271, 1991.

J. Tiedje, Ecology of denitrification and dissimilatory nitrate reduction to ammonium, p.675, 1988.

, Biology of Anaerobic Microorganisms, pp.179-244

A. Tomasek, C. Staley, P. Wang, T. Kaiser, N. Lurndahl et al., , 2017.

, Increased denitrification rates associated with shifts in prokaryotic community composition caused by varying 678 hydrologic connectivity, Front Microbiol, vol.8, p.12

Q. Tu, Z. He, L. Wu, K. Xue, G. Xie et al., Metagenomic 680 reconstruction of nitrogen cycling pathways in a CO 2 -enriched grassland ecosystem, SBB, vol.106, pp.99-108, 2012.

Y. Wang, W. E. Huang, L. Cui, and M. Wagner, Single cell stable isotope probing in microbiology using 682, 2016.
DOI : 10.1016/j.copbio.2016.04.018

URL : https://manuscript.elsevier.com/S0958166916301264/pdf/S0958166916301264.pdf

. Raman-microspectroscopy, Curr. Opin. Biotechnol, vol.41, pp.34-42

N. L. Ward, J. F. Challacombe, P. H. Janssen, B. Henrissat, P. M. Coutinho et al., , p.684

M. Badger and J. , Three genomes from the phylum Acidobacteria provide insight into the lifestyles 685 of these microorganisms in soils, Appl. Environ. Microbiol, vol.75, pp.2046-2056, 2009.

A. Weigelt, R. King, R. Bol, and R. D. Bardgett, Inter-specific variability in organic nitrogen uptake of 687 three temperate grassland species, J. Plant Nutr. Soil Sci, vol.166, pp.606-611, 2003.

J. M. Whipps and J. M. Lynch, Carbon economy. The Rhizosphere, pp.59-97, 1990.

M. Wronka, S. Lewak, T. Tykarska, M. Kuras, and A. M. Zobel, Localization of phenolic compounds in 690 the root cap Columella of six-year-old dry seeds of Brassica napus during imbibition and germination, 1994.

. Bot, , vol.74, pp.321-326

W. G. Zumft, Cell biology and molecular basis of denitrification. Microbiol, Mol. Biol. Rev, vol.61, pp.533-616, 1997.

T. Figures and A. Files,

, rapeseed (Brassica napus), barrel clover (Medicago truncatula), and Arabidopsis 708 thaliana plantlets. (A) Impact of root exudates on denitrifying activity of microbial community colonising the root 709 system. Denitrification activity (g N-N2O h -1 .g -1 dried roots) was measured in triplicates after the addition of nitrate 710 source only. (B) Denitrification enzyme activity (DEA) of soil samples amended with nitrate, Figure 1. Denitrification activities of microbiota colonising the root system and inhabiting the root-adhering soil 707 of wheat (Triticum aestivum)

, of dried soil) and carbon sources (0.5 mg of C-glucose and 0.5 mg of C-glutamic acid g -1 of dried soil) measured 712 in triplicates. Letters show which means differed between treatments (Tukey's test

, Figure 2. Nitrogen uptake of ammonium and nitrate for aboveground (A) and belowground (B) tissues 12 h after 716 15 N labelling (NO3 -or NH4 + ) of wheat (Triticum aestivum), rapeseed (Brassica napus), barrel clover (Medicago 717 truncatula), and Arabidopsis thaliana plantlets. Vertical bars: Means ± Standard Errors. Means significantly 718 different from 15 N-NO3 -: *, P < 0.05. Nitrogen uptake was not measured belowground for A

, Analysis of bacterial diversity. (A) Distribution of the 15 th majors bacterial phyla (abundance in %) 722

, rapeseed (Brassica napus), barrel 723 clover (Medicago truncatula), and Arabidopsis thaliana plantlets. A Venn diagram showing shared and unique 724 bacterial OTUs at 100% identity among bacterial community colonising the root system (B) and those inhabiting 725 the root-adhering soil (C) retrieved from the rhizosphere of wheat (Triticum aestivum), rapeseed (Brassica napus), among the root system and the root-adhering soil of wheat (Triticum aestivum), vol.726

, Significant co-occurrence and co-exclusion relationships among the microbiota inhabiting the root-729 adhering soil (in green) and colonising the root system (in brown) of wheat (Triticum aestivum), rapeseed 730 (Brassica napus), barrel clover (Medicago truncatula), and Arabidopsis thaliana plantlets. The colour of nodes 731 (ring of the cercal) corresponds to the phylum