S. Atzeni and J. Meyer-ter-vehn, The Physics of Inertial Fusion, 2004.

B. A. Remington, R. P. Drake, H. Takabe, and D. Arnett, A Review of Astrophysics Experiments on Intense Lasers, Phys. Plasmas, vol.7, p.1641, 2000.

H. Daido, M. Nishiuchi, and A. S. Pirozhkov, Review of Laser-Driven Ion Sources and Their Applications, Rep. Prog. Phys, vol.75, p.56401, 2012.

A. Macchi, M. Borghesi, and M. Passoni, Ion Acceleration by Superintense Laser-Plasma Interaction, vol.85, p.751, 2013.

W. L. Kruer, The Physics of Laser Plasma Interactions, 1988.

C. Garban-labaune, E. Fabre, C. E. Max, R. Fabbro, F. Amiranoff et al., Effect of Laser Wavelength and Pulse Duration on Laser-Light Absorption and Back Reflection, Phys. Rev. Lett, vol.48, p.1018, 1982.

J. P. Freidberg, R. W. Mitchell, R. L. Morse, and L. I. Rudsinski, Resonant Absorption of Laser Light by Plasma Targets, Phys. Rev. Lett, vol.28, p.795, 1972.

D. W. Forslund, J. M. Kindel, K. Lee, E. L. Lindman, and R. L. Morse, Theory and Simulation of Resonant Absorption in a Hot Plasma, Phys. Rev. A, vol.11, p.679, 1975.

K. G. Estabrook, E. J. Valeo, and W. L. Kruer, Two Dimensional Relativistic Simulations of Resonance Absorption, Phys. Fluids, vol.18, p.1151, 1975.

D. W. Forslund, J. M. Kindel, and K. Lee, Theory of Hot Electron Spectra at High Laser Intensity, Phys. Rev. Lett, vol.39, p.284, 1977.

F. Brunel, Not So Resonant, Resonant Absorption, Phys. Rev. Lett, vol.59, p.52, 1987.

P. B. Corkum, Plasma Perspective on Strong Field Multiphoton Ionization, Phys. Rev. Lett, vol.71, p.1994, 1993.

M. Nantel, J. Itatani, A. C. Tien, J. Faure, D. Kaplan et al., Temporal Contrast in Ti: Sapphire Lasers, Characterization and Control, IEEE J. Sel. Top. Quantum Electron, vol.4, p.449, 1998.

J. Itatani, J. Faure, M. Nantel, G. Mourou, and S. Watanabe, Suppression of the Amplified Spontaneous Emission in Chirped-Pulse-Amplification Lasers by Clean High-Energy Seed-Pulse Injection, Opt. Commun, vol.148, p.70, 1998.

H. C. Kapteyn, M. M. Murnane, A. Szoke, and R. W. Falcone, Prepulse Energy Suppression for High-Energy Ultrashort Pulses Using Self-Induced Plasma Shuttering, vol.16, p.490, 1991.

G. Doumy, F. Quere, O. Gobert, M. Perdrix, P. Martin et al., Complete Characterization of a Plasma Mirror for the Production of High Contrast Ultraintense Laser Pulses, Phys. Rev. E, vol.69, p.26402, 2004.

B. Dromey, S. Kar, M. Zepf, and P. Foster, The Plasma Mirror-A Subpicosecond Optical Switch for Ultrahigh Power Lasers, Rev. Sci. Instrum, vol.75, p.645, 2004.

A. Lévy, T. Ceccotti, P. Oliveira, F. Réau, M. Perdrix et al., Double Plasma Mirror for Ultrahigh Temporal Contrast Ultraintense, Opt. Lett, vol.32, p.310, 2007.

C. Thaury, F. Quéré, J. P. Geindre, A. Lévy, T. Ceccotti et al., Plasma Mirrors for Ultrahigh Intensity Optics, Nat. Phys, vol.3, p.424, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01166802

P. Gibbon and A. R. Bell, Collisionless Absorption in Sharp Edged Plasmas, Phys. Rev. Lett, vol.68, p.1535, 1992.

P. Gibbon, A. Andreev, E. Lefebvre, G. Bonnaud, H. Ruhl et al., Calibration of One Dimensional Boosted Kinetic Codes for Modeling High Intensity Laser Solid Interactions, Phys. Plasmas, vol.6, p.947, 1999.

C. Thaury and F. Quéré, High Order Harmonic and Attosecond Pulse Generation on Plasma Mirrors: Basic Mechanisms, J. Phys. B, vol.43, p.213001, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00569857

F. N. Beg, A. R. Bell, A. E. Dangor, C. N. Danson, A. P. Fews et al., A Study of Picosecond Laser Solid Interactions Up to 10 19 W=cm 2, Phys. Plasmas, vol.4, p.447, 1997.

S. C. Wilks, A. B. Langdon, T. E. Cowan, M. Roth, M. Singh et al., Energetic Proton Generation in Ultra Intense Laser Solid Interactions, Phys. Plasmas, vol.8, p.542, 2001.

K. B. Wharton, S. P. Hatchett, S. C. Wilks, M. H. Key, J. D. Moody et al., Experimental Measurements of Hot Electrons Generated by Ultraintense (10 19 W=cm 2 ) Laser Plasma Interactions on Solid Density Targets, Phys. Rev. Lett, vol.81, p.822, 1998.

S. Bastiani, P. Audebert, J. P. Geindre, T. Schlegel, J. C. Gauthier et al., Hot Electron Distribution Functions in a Subpicosecond Laser Interaction with Solid Targets of Varying Initial Gradient Scale Lengths, Phys. Rev. E, vol.60, p.3439, 1999.

D. F. Cai, Y. Q. Gu, Z. J. Zheng, T. S. Wen, S. T. Chunyu et al., Experimental Study for

, Angular Distribution of the Hot Electrons Generated by Femtosecond Laser Interaction with Solid Targets, Phys. Plasmas, vol.10, p.3265, 2003.

A. G. Mordovanakis, J. Easter, N. Naumova, K. Popov, P. Masson-laborde et al.,

W. Glazyrin and . Rozmus, Quasimonoenergetic Electron Beams with Relativistic Energies and Ultrashort Duration from Laser Solid Interactions at 0.5 kHz, Phys. Rev. Lett, vol.103, p.235001, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00838486

F. Brandl, B. Hidding, J. Osterholz, D. Hemmers, A. Karmakar et al., Directed Acceleration of Electrons from a Solid Surface by Sub-10-fs Laser Pulses, Phys. Rev. Lett, vol.102, p.195001, 2009.

W. Wang, J. Liu, Y. Cai, C. Wang, L. Liu et al., Angular and Energy Distribution of Fast Electrons Emitted from a Solid Surface Irradiated by Femtosecond Laser Pulses in Various Conditions, Phys. Plasmas, vol.17, p.23108, 2010.

Y. Tian, J. Liu, W. Wang, C. Wang, A. Deng et al., Electron Emission at Locked Phases from the Laser-Driven Surface Plasma Wave, Phys. Rev. Lett, vol.109, p.115002, 2012.

M. Thévenet, A. Leblanc, S. Kahaly, H. Vincenti, A. Vernier et al., Vacuum Laser Acceleration of Relativistic Electrons Using Plasma Mirror Injectors, Nat. Phys, vol.12, p.355, 2016.

U. Teubner and P. Gibbon, High-Order Harmonics from Laser-Irradiated Plasma Surfaces, Rev. Mod. Phys, vol.81, p.445, 2009.

J. T. Mendonca and F. Doveil, Stochasticity in Plasmas with Electromagnetic Waves, vol.28, p.485, 1982.

Y. Sentoku, V. Y. Bychenkov, K. Flippo, A. Maksimchuk, K. Mima et al., High Energy Ion Generation in Interaction of Short Laser Pulse with High Density Plasma, Appl. Phys. B, vol.74, p.207, 2002.

Z. Sheng, K. Mima, Y. Sentoku, M. S. Jovanovic, T. Taguchi et al., Stochastic Heating and Acceleration of Electrons in Colliding Laser Fields in Plasma, Phys. Rev. Lett, vol.88, p.55004, 2002.

S. Kahaly, S. Monchocé, H. Vincenti, T. Dzelzainis, B. Dromey et al., Direct Observation of Density Gradient Effects in Harmonic Generation from Plasma Mirrors, Phys. Rev. Lett, vol.110, p.175001, 2013.
URL : https://hal.archives-ouvertes.fr/cea-00853613

M. Bocoum, F. Böhle, A. Vernier, A. Jullien, J. Faure et al., Spatial-Domain Interferometer for Measuring Plasma Mirror Expansion, vol.40, p.3009, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01229263

, 011050 for a document with additional information on the simulations and experiments as well as a movie of PIC simulation results

J. Vay, R. Lehe, H. Vincenti, B. B. Godfrey, I. Haber et al., Recent Advances in High-Performance Modeling of Plasma-Based Acceleration Using the Full PIC Method, Nucl. Instrum. Methods Phys. Res., Sect. A, vol.829, p.353, 2016.

H. Vincenti and J. Vay, Detailed Analysis of the Effects of Stencil Spatial Variations with Arbitrary High-Order Finite-Difference Maxwell Solver, Comput. Phys. Commun, vol.200, p.147, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01426492

H. Vincenti, M. Lobet, R. Lehe, R. Sasanka, and J. Vay, An Efficient and Portable SIMD Algorithm for Charge/ Current Deposition in Particle-in-Cell Codes, Comput. Phys. Commun, vol.210, p.145, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01426502

H. Vincenti and J. Vay, Ultrahigh-Order Maxwell Solver with Extreme Scalability for Electromagnetic PIC Simulations of Plasmas, Comput. Phys. Commun, vol.228, p.22, 2018.
URL : https://hal.archives-ouvertes.fr/cea-01894332

G. Blaclard, H. Vincenti, R. Lehe, and J. L. Vay, Pseudospectral Maxwell Solvers for an Accurate Modeling of Doppler Harmonic Generation on Plasma Mirrors with Particle in Cell Codes, Phys. Rev. E, vol.96, p.33305, 2017.

, When the incident laser beam is considered to be a plane wave (infinite focal spot size), the simulation is performed in a Lorentz-boosted frame, such that the laser impinges the plasma at normal incidence. Then, only one spatial coordinate (along the target normal) is taken into account in the simulation

R. Lichters, J. Meyer-ter-vehn, and A. Pukhov, Short Pulse Laser Harmonics from Oscillating Plasma Surfaces Driven at Relativistic Intensity, Phys. Plasmas, vol.3, p.3425, 1996.

B. Dromey, M. Zepf, A. Gopal, K. Lancaster, M. S. Wei et al., High Harmonic Generation in the Relativistic Limit, Nat. Phys, vol.2, p.456, 2006.

S. Gordienko, A. Pukhov, O. Shorokhov, and T. Baeva, Relativistic Doppler Effect: Universal Spectra and Zeptosecond Pulses, Phys. Rev. Lett, vol.93, p.115002, 2004.

T. Baeva, S. Gordienko, and A. Pukhov, Theory of High-Order Harmonic Generation in Relativistic Laser Interaction with Overdense Plasma, Phys. Rev. E, vol.74, p.46404, 2006.

D. , A. Der-brugge, and A. Pukhov, Enhanced Relativistic Harmonics by Electron Nanobunching, Phys. Plasmas, vol.17, p.33110, 2010.

A. A. Gonoskov, A. V. Korzhimanov, A. V. Kim, M. Marklund, and A. M. Sergeev, Ultrarelativistic Nanoplasmonics as a Route towards Extreme-Intensity Attosecond Pulses, Phys. Rev. E, vol.84, p.46403, 2011.

A. Debayle, J. Sanz, and L. Gremillet, Self-Consistent Theory of High-Order Harmonic Generation by Relativistic Plasma Mirror, Phys. Rev. E, vol.92, p.53108, 2015.

J. Sanz, A. Debayle, and K. Mima, Model for Ultraintense Laser-Plasma Interaction at Normal Incidence, Phys. Rev. E, vol.85, p.46411, 2012.

M. Cherednychek and A. Pukhov, Analytical Description of Attosecond Pulse Generation on a Plasma Surface Irradiated by High-Intense Laser Pulses, Quantum Electron, vol.46, p.353, 2016.

G. Malka, E. Lefebvre, and J. L. Miquel, Experimental Observation of Electrons Accelerated in Vacuum to

, Relativistic Energies by a High-Intensity Laser, Phys. Rev. Lett, vol.78, p.3314, 1997.

B. Quesnel and P. Mora, Theory and Simulation of the Interaction of Ultraintense Laser Pulses with Electrons in Vacuum, Phys. Rev. E, vol.58, p.3719, 1998.

M. Thévenet, H. Vincenti, and J. Faure, On the Physics of Electron Ejection from Laser-Irradiated Overdense Plasmas, Phys. Plasmas, vol.23, p.63119, 2016.

M. Tatarakis, A. Gopal, I. Watts, F. N. Beg, A. E. Dangor et al., Measurements of Ultrastrong Magnetic Fields during Relativistic Laser-Plasma Interactions, Phys. Plasmas, vol.9, p.2244, 2002.

H. Ruhl, Y. Sentoku, K. Mima, K. A. Tanaka, and R. Kodama, Collimated Electron Jets by Intense LaserBeam-Plasma Surface Interaction under Oblique Incidence, Phys. Rev. Lett, vol.82, p.743, 1999.

Y. T. Li, X. H. Yuan, M. H. Xu, Z. Y. Zheng, Z. M. Sheng et al., Observation of a Fast Electron Beam Emitted along the Surface of a Target Irradiated by Intense Femtosecond Laser Pulses, Phys. Rev. Lett, vol.96, p.165003, 2006.

M. Nakatsutsumi, Y. Sentoku, A. Korzhimanov, S. N. Chen, S. Buffechoux et al., Self-Generated Surface Magnetic Fields Inhibit Laser-Driven Sheath Acceleration of HighEnergy Protons, Nat. Commun, vol.9, p.280, 2018.
URL : https://hal.archives-ouvertes.fr/cea-01881052

F. Pérez, A. J. Kemp, L. Divol, C. D. Chen, and P. K. Patel, Deflection of MeV Electrons by Self-Generated Magnetic Fields in Intense Laser-Solid Interactions, Phys. Rev. Lett, vol.111, p.245001, 2013.

R. Fabbro and P. Mora, Hot Electrons Behavior in LaserPlane Target Experiments, Phys. Lett. A, vol.90, p.48, 1982.

C. Thaury, P. Mora, A. Héron, J. Adam, and T. M. Antonsen, Influence of the Weibel Instability on the Expansion of a Plasma Slab into a Vacuum, Phys. Rev. E, vol.82, p.26408, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01166851

A. Kumar, C. Shukla, A. Das, and P. Kaw, Energy Principle for Excitations in Plasmas with Counterstreaming Electron Flows, vol.8, p.55213, 2018.

R. N. Sudan, Mechanism for the Generation of 10 9 G Magnetic Fields in the Interaction of Ultraintense Short Laser Pulse with an Overdense Plasma Target, Phys. Rev. Lett, vol.70, p.3075, 1993.

D. D. Meyerhofer, High-Intensity-Laser-Electron Scattering, IEEE J. Quantum Electron, vol.33, p.1935, 1997.

J. T. Mendonca, Threshold for Electron Heating by Two Electromagnetic Waves, Phys. Rev. A, vol.28, p.3592, 1983.

J. Rax, Compton Harmonic Resonances, Stochastic Instabilities, Quasilinear Diffusion, and Collisionless Damping with Ultra-High-Intensity Laser Waves, Phys. Fluids B, vol.4, p.3962, 1992.

D. Patin, E. Lefebvre, A. Bourdier, and E. , Stochastic Heating in Ultra High Intensity Laser-Plasma Interaction: Theory and PIC Code Simulations, vol.24, p.223, 2006.

A. Bourdier, D. Patin, and E. Lefebvre, Stochastic Heating in Ultra High Intensity Laser-Plasma Interaction, vol.206, p.1, 2005.

A. G. Krygier, D. W. Schumacher, and R. R. Freeman, On the Origin of Super-Hot Electrons from Intense Laser Interactions with Solid Targets Having Moderate Scale Length Preformed Plasmas, Phys. Plasmas, vol.21, p.23112, 2014.

B. S. Paradkar, S. I. Krasheninnikov, and F. N. Beg, Mechanism of Heating of Pre-Formed Plasma Electrons in Relativistic Laser-Matter Interaction, Phys. Plasmas, vol.19, p.60703, 2012.

A. J. Kemp, Y. Sentoku, and M. Tabak, Hot-Electron Energy Coupling in Ultraintense Laser-Matter Interaction, Phys. Rev. E, vol.79, p.66406, 2009.

P. Zhang, N. Saleh, S. Chen, Z. M. Sheng, and D. Umstadter, Laser-Energy Transfer and Enhancement of Plasma Waves and Electron Beams by Interfering High-Intensity Laser Pulses, Phys. Rev. Lett, vol.91, p.225001, 2003.

J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec et al., Controlled Injection and Acceleration of Electrons in Plasma Wakefields by Colliding Laser Pulses, vol.444, p.737, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00502237

S. Rassou, A. Bourdier, and M. Drouin, Role of Stochastic Heating in Wakefield Acceleration when Optical Injection Is Used, Phys. Plasmas, vol.21, p.83101, 2014.

S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, 2018.

Y. B. Ya and . Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, 2002.