H. V. Löhneysen, Non-Fermi-liquid behavior in a heavy-fermion alloy at a magnetic instability, Phys. Rev. Lett, vol.72, pp.3262-3265, 1994.

P. Fournier, Insulator-metal crossover near optimal doping in Pr2-xCexCuO4 : Anomalous normal-state low temperature resistivity, Phys. Rev. Lett, vol.81, pp.4720-4723, 1998.

S. A. Grigera, Magnetic field-tuned quantum criticality in the metallic ruthenate Sr3Ru2CuO7, Science, vol.294, pp.329-332, 2001.

N. Doiron-leyraud, Correlation between linear resistivity and Tc in the Bechgaard salts and the pnictide superconductor Ba(Fe1-xCox)2As2, Phys. Rev. B, vol.80, p.214531, 2009.

P. Coleman and A. J. Schofield, Quantum criticality, Nature, vol.433, pp.226-229, 2005.

S. Martin, Normal-state transport properties of Bi2+xSr2-yCuO6+? single crystals, Phys. Rev. B, vol.41, pp.846-849, 1990.

R. Daou, Linear temperature dependence of resistivity and change in the Fermi surface at the pseudogap critical point of a high-Tc superconductor, Nat. Phys, vol.5, pp.31-34, 2009.

R. A. Cooper, Anomalous criticality in the electrical resistivity of La2-xSrxCuO4, Science, vol.323, pp.603-607, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00441008

J. Zaanen, Why the temperature is high, Nature, vol.430, pp.512-513, 2004.

J. A. Bruin, Similarity of scattering rates in metals showing T-linear resistivity, Science, vol.339, pp.804-807, 2013.

C. Collignon, Fermi-surface transformation across the pseudogap critical point of the cuprate superconductor La1.6?xNd0.4SrxCuO4, Phys. Rev. B, vol.95, p.224517, 2017.

N. Doiron-leyraud, Pseudogap phase of cuprate superconductors confined by Fermi surface topology, Nat. Commun, vol.8, p.2044, 2017.

K. Jin, Link between spin fluctuations and electron pairing in copper oxide superconductors, Nature, vol.476, pp.73-75, 2011.

T. Sarkar, Fermi surface reconstruction and anomalous low-temperature resistivity in electron-doped La2-xCexCuO4, Phys. Rev. B, vol.96, p.155449, 2017.

H. V. Löhneysen, Fermi-liquid instabilities at magnetic quantum phase transitions, Rev. Mod. Phys, vol.79, pp.1015-1075, 2007.

Y. Dagan, Evidence for a quantum phase transition in Pr2-xCexCuO4 from transport measurements, Phys. Rev. Lett, vol.92, p.167001, 2004.

F. F. Tafti, Nernst effect in the electron-doped cuprate superconductor Pr2-xCexCuO4: Superconducting fluctuations, upper critical field Hc2 , and the origin of the Tc dome, Phys. Rev. B, vol.90, p.24519, 2014.

E. M. Motoyama, Spin correlations in the electron-doped high-transitiontemperature superconductor Nd2-xCexCuO4, Nature, vol.445, pp.186-189, 2007.

C. Matt, Electron scattering, charge order

. La1, ?xNd0.4SrxCuO4: An angle-resolved photoemission spectroscopy study, Phys. Rev. B, vol.92, issue.6, p.134524, 2015.

T. Yoshida, Systematic doping evolution of the underlying Fermi surface of

, Phys. Rev. B, vol.74, p.224510, 2006.

A. Kaminski, Change of Fermi-surface topology in Bi2Sr2CaCu2O8+? with doping, Phys. Rev. B, vol.73, p.174511, 2006.

S. Benhabib, Collapse of the normal-state pseudogap at a Lifshitz transition in the Bi2Sr2CaCu2O8+? cuprate superconductor, Phys. Rev. Lett, vol.114, p.147001, 2015.

N. E. Hussey, Phenomenology of the normal-state in-plane transport properties of high-Tc cuprates, J. Phys.: Condens. Matter, vol.20, p.123201, 2008.

B. Fauqué, Dispersion of the odd magnetic resonant mode in near-optimally doped Bi2Sr2CaCu2O8+?, Phys. Rev. B, vol.76, p.214512, 2007.

J. M. Tranquada, Coexistence of, and competition between, superconductivity and charge-stripe order in La1.62-xNd0.4SrxCuO4, Phys. Rev. Lett, vol.78, p.338, 1997.

N. E. Hussey, Generic strange metal behavior of overdoped cuprates, J. Phys.: Conf. Series, vol.449, p.12004, 2013.

H. Matsui, Evolution of the pseudogap across the magnet-superconductor phase boundary of Nd2?xCexCuO4, Phys. Rev. B, vol.75, p.224514, 2007.

T. Helm, Evolution of the Fermi surface of the electron-doped high-temperature superconductor Nd2-xCexCuO4 revealed by Shubnikov-de Haas oscillations, Phys. Rev. Lett, vol.103, p.157002, 2009.

T. Helm, Correlation between Fermi surface transformations and superconductivity in the electron-doped high-Tc superconductor Nd2?xCexCuO4, Phys. Rev. B, vol.92, p.94501, 2015.

W. Yu, Magnetic-field dependence of the low-temperature specific heat of the electron-doped superconductor Pr1.85Ce0.15CuO4, Phys. Rev. B, vol.72, p.212512, 2005.

A. Bangura, Fermi surface and electronic homogeneity of the overdoped cuprate superconductor Tl2Ba2CuO6+? as revealed by quantum oscillations, Phys. Rev. B, vol.82, p.140501, 2010.

J. W. Loram, Evidence on the pseudogap and the condensate from the electronic specific heat, J. Phys. Chem. Solids, vol.62, pp.59-64, 2001.

S. Nakamae, Electronic ground state of heavily overdoped nonsuperconducting La2-xSrxCuO4, Phys. Rev. B, vol.68, p.100502, 2003.

Y. Wang, Weak-coupling d-wave BCS superconductivity and unpaired electrons in overdoped La2?xSrxCuO4 single crystals, Phys. Rev. B, vol.76, p.64512, 2007.

B. Michon, Thermodynamic signatures of quantum criticality in cuprate superconductors, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02045288

R. A. Davison, K. Schalm, and J. Zaanen, Holographic duality and the resistivity of strange metals, Phys. Rev. B, vol.89, p.245116, 2014.

S. A. Hartnoll, Theory of universal incoherent metallic transport, Nat. Phys, vol.11, pp.54-61, 2015.

X. Y. Song, Strongly correlated metal built from Sachdev-Ye-Kitaev models, Phys. Rev. Lett, vol.119, p.216601, 2017.

S. Charpentier, Antiferromagnetic fluctuations and the Hall effect of electrondoped cuprates: possibility of a quantum phase transition at underdoping, Phys. Rev. B, vol.81, p.104519, 2010.

N. E. Hussey, Dichotomy in the T-linear resistivity in hole-doped cuprates, Phil. Trans. R. Soc. A, vol.369, pp.1626-1639, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00608144

, In the single-layer cuprate Bi2201, the pseudogap critical point is located at very high doping, near the end of the superconducting dome

, The Fermi surface measured by ARPES is also found to change topology from hole-like to electron-like near the end of the superconducting dome

, we get A1 = 0.9 ± 0.2 ?? cm / K. Dividing by the interlayer spacing, which is two times larger in Bi2201 than in LSCO, we get A1 ? = 8 ± 2 ? / K. Remarkably, this is the same value, within error bars, as in Bi2212 and Nd-LSCO, all at their respective critical dopings, Taking the average of those two values, consistent with typical error bars on geometric factors (±15%)

, With increasing field to suppress superconductivity, ? increases from 6 mJ / K 2 mol at H = 0 to 8 mJ / K 2 mol at H = 6 T, and is estimated to reach 10 mJ / K 2 mol at the critical field Hc2 = 18 T [48]. Given the uncertainty in the latter estimation, we take ? = 10 ± 2 mJ / K 2 mol , which yields m* = 7 ± 1.5 m0. Note that ? may be somewhat larger at the slightly higher doping, We can estimate m* from specific heat data measured on a Bi2201 crystal with Tc = 19 K [48], at a doping slightly below p*, vol.46

T. Helm, Electronic properties of electron-doped cuprate superconductors probed by highfield magneto-transport, 2013.

O. Cyr-choinière, Pseudogap temperature T* of cuprates from the Nernst effect, Phys. Rev. B, vol.97, p.64502, 2018.

I. M. Vishik, Phase competition in trisected superconducting dome, PNAS, vol.109, pp.18332-18337, 2012.

J. Moser, Hall effect in the normal phase of the organic superconductor (TMTSF)2PF6, Phys. Rev. Lett, vol.84, pp.2674-2677, 2000.

S. Uji, Rapid oscillations and Fermi-surface reconstruction due to spin-density-wave formation in the organic conductor (TMTSF)2PF6, Phys. Rev. B, vol.55, pp.12446-12453, 1997.

S. Kawasaki, Carrier-concentration dependence of the pseudogap ground state of superconducting Bi2Sr2-xLaxCuO6+? revealed by 63,65 Cu-nuclear magnetic resonance in very high magnetic fields, Phys. Rev. Lett, vol.105, p.137002, 2010.

T. Kondo, Hole-concentration dependence of band structure in (Bi,Pb)2(Sr,La)2CuO6+? determined by the angle-resolved photoemission spectroscopy, J. Electron Spectroscopy and Related Phenomena, vol.137, pp.663-668, 2004.

H. Ikuta, Low-temperature specific heat of overdoped Bi2201 single crystals. Physica C 388-389, pp.361-362, 2003.