S. Ogawa, Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging, Proc. Natl. Acad. Sci. USA, vol.89, pp.5951-5955, 1992.

S. Ogawa, Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model, Biophys. J, vol.64, pp.803-812, 1993.

N. K. Logothetis, What we can do and what we cannot do with fMRI, Nature, vol.453, pp.869-878, 2008.

K. L. Davis, . Neuropsychopharmacology, K. L. Davis, D. Charney, J. Coyle et al., The Fifth Generation of Progress, 2002.

S. Mangia, Metabolic and hemodynamic events after changes in neuronal activity: current hypotheses, theoretical predictions and in vivo NMR experimental findings, J. Cereb. Blood Flow Metab, vol.29, pp.441-463, 2009.

H. Lu and P. C. Van-zijl, A review of the development of Vascular-Space-Occupancy (VASO) fMRI, Neuroimage, vol.62, pp.736-742, 2012.

L. Bihan and D. , Looking into the functional architecture of the brain with diffusion MRI, Nat. Rev. Neurosci, vol.4, pp.469-480, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00349696

W. Chen, E. J. Novotny, X. H. Zhu, D. L. Rothman, and R. G. Shulman, Localized 1H NMR measurement of glucose consumption in the human brain during visual stimulation, Proc. Natl. Acad. Sci. USA, vol.90, pp.9896-9900, 1993.

F. Hyder, Oxidative glucose metabolism in rat brain during single forepaw stimulation: a spatially localized 1H[13C] nuclear magnetic resonance study, J. Cereb. Blood Flow Metab, vol.17, pp.1040-1047, 1997.

M. T. Mcmahon, A. A. Gilad, J. W. Bulte, and P. C. Van-zijl, Chemical Exchange Saturation Transfer Imaging: Advances and Applications, 2017.

K. W. Chan, Natural D-glucose as a biodegradable MRI contrast agent for detecting cancer, Magn. Reson. Med, vol.68, pp.1764-1773, 2012.

K. Cai, Magnetic resonance imaging of glutamate, Nat. Med, vol.18, pp.302-306, 2012.

C. Debrosse, Lactate Chemical Exchange Saturation Transfer (LATEST) Imaging in vivo A Biomarker for LDH Activity, Scientific reports, vol.6, p.19517, 2016.

G. Yan, A Potential Magnetic Resonance Imaging Technique Based on Chemical Exchange Saturation Transfer for In Vivo ?-Aminobutyric Acid Imaging, PloS one, vol.11, 2016.

S. Walker-samuel, In vivo imaging of glucose uptake and metabolism in tumors, Nat. Med, vol.19, pp.1067-1072, 2013.

T. Jin, H. Mehrens, K. S. Hendrich, and S. Kim, Mapping brain glucose uptake with chemical exchange-sensitive spin-lock magnetic resonance imaging, J. Cereb. Blood Flow Metab, vol.34, pp.1402-1410, 2014.

L. Sokoloff, Relation between physiological function and energy metabolism in the central nervous system, J. Neurochem, vol.29, pp.13-26, 1977.

P. T. Fox, M. E. Raichle, M. A. Mintun, and C. Dence, Nonoxidative glucose consumption during focal physiologic neural activity, Science, vol.241, pp.462-466, 1988.

I. A. Silver and M. Ereci?ska, Extracellular glucose concentration in mammalian brain: continuous monitoring of changes during increased neuronal activity and upon limitation in oxygen supply in normo-, hypo-, and hyperglycemic animals, J. Neurosci, vol.14, pp.5068-5076, 1994.

H. F. Wehrl, Simultaneous PET-MRI reveals brain function in activated and resting state on metabolic, hemodynamic and multiple temporal scales, Nat. Med, vol.19, pp.1184-1189, 2013.

M. Bernier, E. Croteau, C. Castellano, S. C. Cunnane, and K. Whittingstall, Spatial distribution of resting-state BOLD regional homogeneity as a predictor of brain glucose uptake: A study in healthy aging, Neuroimage, vol.150, pp.14-22, 2017.

R. Gruetter, E. J. Novotny, S. D. Boulware, D. L. Rothman, and R. G. Shulman, 1H NMR studies of glucose transport in the human brain, J. Cereb. Blood Flow Metab, vol.16, pp.427-438, 1996.

M. F. Alf, MRS glucose mapping and PET joining forces: re-evaluation of the lumped constant in the rat brain under isoflurane anaesthesia, J. Neurochem, vol.129, pp.672-682, 2014.

M. Zaiss, A combined analytical solution for chemical exchange saturation transfer and semi-solid magnetization transfer, NMR Biomed, vol.28, pp.217-230, 2015.

L. Ciobanu, fMRI contrast at high and ultrahigh magnetic fields: insight from complementary methods, Neuroimage, vol.113, pp.37-43, 2015.

S. Swanson and Y. Pang, MT is Symmetric but Shifted with Respect to Water, Proc. Intl. Soc. Mag. Reson. Med. 11. Toronto, 2003.

A. W. Song, S. D. Wolff, R. S. Balaban, and P. Jezzard, The effect of off-resonance radiofrequency pulse saturation on fMRI contrast, NMR Biomed, vol.10, pp.208-215, 1997.

J. Kealy, R. Bennett, and J. P. Lowry, Simultaneous recording of hippocampal oxygen and glucose in real time using constant potential amperometry in the freely-moving rat, J. Neurosci. Methods, vol.215, pp.110-120, 2013.

X. Zhang, Assignment of the molecular origins of CEST signals at 2 ppm in rat brain, Magn. Reson. Med, vol.78, pp.881-887, 2017.

F. Giove, The physiology and metabolism of neuronal activation: in vivo studies by NMR and other methods, Magn. Reson. Imaging, vol.21, pp.1283-1293, 2003.

F. A. Nasrallah, G. Pagès, P. W. Kuchel, X. Golay, and K. Chuang, Imaging brain deoxyglucose uptake and metabolism by glucoCEST MRI, J. Cereb. Blood Flow Metab, vol.33, pp.1270-1278, 2013.

X. Xu, Dynamic glucose enhanced (DGE) MRI for combined imaging of blood-brain barrier break down and increased blood volume in brain cancer, Magn. Reson. Med, vol.74, pp.1556-1563, 2015.

J. C. Lamanna, K. A. Mccracken, M. Patil, and O. J. Prohaska, Stimulus-activated changes in brain tissue temperature in the anesthetized rat, Metab. Brain Dis, vol.4, pp.225-237, 1989.

H. K. Trübel, L. I. Sacolick, and F. Hyder, Regional temperature changes in the brain during somatosensory stimulation, J. Cereb. Blood Flow Metab, vol.26, pp.68-78, 2006.

V. A. Magnotta, Detecting activity-evoked pH changes in human brain, Proc. Natl. Acad. Sci. USA, vol.109, pp.8270-8273, 2012.

V. Khlebnikov, Establishing upper limits on neuronal activity-evoked pH changes with APT-CEST MRI at 7 T. Magnetic resonance in medicine, vol.80, pp.126-136, 2018.

J. Zhou, B. Lal, D. A. Wilson, J. Laterra, and P. C. Van-zijl, Amide proton transfer (APT) contrast for imaging of brain tumors, Magn. Reson. Med, vol.50, pp.1120-1126, 2003.

J. Zhou, J. Payen, D. A. Wilson, R. J. Traystman, and P. C. Van-zijl, Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI, Nat. Med, vol.9, pp.1085-1090, 2003.

M. Kim, J. Gillen, B. A. Landman, J. Zhou, and P. C. Van-zijl, Water saturation shift referencing (WASSR) for chemical exchange saturation transfer (CEST) experiments, Magn. Reson. Med, vol.61, pp.1441-1450, 2009.

M. Haris, K. Cai, A. Singh, H. Hariharan, and R. Reddy, In vivo mapping of brain myo-inositol, Neuroimage, vol.54, pp.2079-2085, 2011.

R. A. Swanson, M. M. Morton, S. M. Sagar, and F. R. Sharp, Sensory stimulation induces local cerebral glycogenolysis: demonstration by autoradiography, Neuroscience, vol.51, pp.451-461, 1992.

G. A. Dienel, R. Y. Wang, and N. F. Cruz, Generalized sensory stimulation of conscious rats increases labeling of oxidative pathways of glucose metabolism when the brain glucose-oxygen uptake ratio rises, J. Cereb. Blood Flow Metab, vol.22, pp.1490-1502, 2002.

G. Oz, Human brain glycogen content and metabolism: implications on its role in brain energy metabolism, Am. J. Physiol, vol.292, pp.946-951, 2007.

B. Li and R. D. Freeman, Neurometabolic coupling between neural activity, glucose, and lactate in activated visual cortex, J. Neurochem, vol.135, pp.742-54, 2015.

J. Chuquet, P. Quilichini, E. A. Nimchinsky, and G. Buzsáki, Predominant enhancement of glucose uptake in astrocytes versus neurons during activation of the somatosensory cortex, J. Neurosci, vol.30, pp.15298-15303, 2010.

D. Liu, Quantitative characterization of nuclear overhauser enhancement and amide proton transfer effects in the human brain at 7 Tesla, Magn. Reson. Med, vol.70, pp.1070-1081, 2013.

M. Zaiss, Relaxation-compensated CEST-MRI of the human brain at 7T: Unbiased insight into NOE and amide signal changes in human glioblastoma, Neuroimage, vol.112, pp.180-188, 2015.

T. Jin and S. Kim, Characterization of non-hemodynamic functional signal measured by spin-lock fMRI, Neuroimage, vol.78, pp.385-395, 2013.

M. Bianciardi, P. Van-gelderen, and J. H. Duyn, Investigation of BOLD fMRI resonance frequency shifts and quantitative susceptibility changes at 7 T. Hum, Brain Mapp, vol.35, pp.2191-2205, 2014.

L. Gagnon, Quantifying the microvascular origin of BOLD-fMRI from first principles with two-photon microscopy and an oxygen-sensitive nanoprobe, J. Neurosci, vol.35, pp.3663-3675, 2015.

R. Gruetter, Automatic, localized in vivo adjustment of all first-and second-order shim coils, Magn. Reson. Med, vol.29, pp.804-811, 1993.

S. Kanayama, S. Kuhara, and K. Satoh, In vivo rapid magnetic field measurement and shimming using single scan differential phase mapping, Magn. Reson. Med, vol.36, pp.637-642, 1996.

G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, 2007.