J. Liu, S. Z. Qiao, Q. H. Hu, and G. Q. Lu, Magnetic nanocomposites with mesoporous structures: synthesis and applications, vol.7, p.425, 2011.

M. Colombo, S. Carregal-romero, M. F. Casula, L. Gutierrez, M. P. Morales et al.,

D. Heverhagen, W. J. Prosperi, and . Parak, Biological applications of magnetic nanoparticles, Chem. Soc. Rev, vol.41, p.4306, 2012.

F. Qiu and B. J. Nelson, Magnetic Helical Micro-and Nanorobots, Toward Their Biomedical Applications, Engineering, vol.1, p.21, 2015.

C. Bechinger, R. D. Leonardo, H. Lowen, C. Reichhardt, G. Volpe et al., Active Particles in Complex and Crowded Environments, Rev. Mod. Phys, vol.88, p.45006, 2016.

A. Ghosh and P. Fischer, Controlled propulsion of artificial magnetic nanostructured propellers, Nano Lett, vol.9, p.2243, 2009.

S. Tottori, L. Zhang, F. Qiu, K. K. Krawczyk, A. Franco-obregon et al., Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport, Adv. Mater, vol.24, p.811, 2012.

D. Schamel, A. G. Mark, J. G. Gibbs, C. Miksch, K. I. Morozov et al., Nanopropellers and their actuation in complex viscoelastic media, ACS Nano, vol.8, p.8794, 2014.

T. Li, J. Li, H. Zhang, X. Chang, W. Song et al., Magnetically Propelled Fish-Like Nanoswimmers, vol.12, p.6098, 2016.
DOI : 10.1002/smll.201601846

P. J. Vach, N. Brun, M. Bennet, L. Bertinetti, M. Widdrat et al., Selecting for function: solution synthesis of magnetic nanopropellers, Nano Lett, vol.13, p.5373, 2013.

P. Fischer and A. Ghosh, Magnetically actuated propulsion at low Reynolds numbers: towards nanoscale control, Nanoscale, vol.3, p.557, 2011.

W. Gao, X. Feng, A. Pei, C. R. Kane, R. Tam et al., Bioinspired helical microswimmers based on vascular plants, Nano Lett, vol.14, p.305, 2014.

J. Li, S. Sattayasamitsathit, R. Dong, W. Gao, R. Tam et al., Template electrosynthesis of tailored-made helical nanoswimmers, Nanoscale, vol.6, p.9415, 2014.

H. C. Fu, M. Jabbarzadeh, and F. Meshkati, Magnetization directions and geometries of helical microswimmers for linear velocity-frequency response, Phys. Rev. E: Stat, vol.91, p.43011, 2015.

P. J. Vach, S. Klumpp, and D. Faivre, Steering magnetic micropropellers along independent trajectories, J. Phys. D: Appl. Phys, vol.49, p.65003, 2016.
DOI : 10.1088/0022-3727/49/6/065003

URL : http://iopscience.iop.org/article/10.1088/0022-3727/49/6/065003/pdf

A. Ghosh, D. Paria, H. J. Singh, P. L. Venugopalan, and A. Ghosh, Dynamical configurations and bistability of helical nanostructures under external torque, Nonlinear, Soft Matter Phys, vol.86, p.31401, 2012.

A. Ghosh, P. Mandal, S. Karmakar, and A. Ghosh, Analytical theory and stability analysis of an elongated nanoscale object under external torque, Phys. Chem. Chem. Phys, vol.15, p.10817, 2013.

K. I. Morozov and A. M. Leshansky, The chiral magnetic nanomotors, Nanoscale, vol.6, p.1580, 2014.

U. K. Cheang, F. Meshkati, D. Kim, M. J. Kim, and H. C. Fu, Minimal geometric requirements for micropropulsion via magnetic rotation, Nonlinear, Soft Matter Phys, vol.90, p.33007, 2014.

K. I. Morozov, Y. Mirzae, O. Kenneth, and A. M. Leshansky, Dynamics of arbitrary shaped propellers driven by a rotating magnetic field, Phys. Rev. Fluids, vol.2, p.44202, 2017.

Z. B. Zhang, H. F. Duan, S. H. Li, and Y. J. Lin, Assembly of Magnetic Nanospheres into OneDimensional Nanostructured Carbon Hybrid Materials, Langmuir, vol.26, p.6676, 2010.

P. J. Vach, P. Fratzl, S. Klumpp, and D. Faivre, Fast Magnetic Micropropellers with Random Shapes, Nano Lett, vol.15, p.7064, 2015.
DOI : 10.1021/acs.nanolett.5b03131

URL : https://doi.org/10.1021/acs.nanolett.5b03131

Z. Zhang, H. Duan, S. Li, and Y. Lin, Assembly of magnetic nanospheres into one-dimensional nanostructured carbon hybrid materials, Langmuir, vol.26, p.6676, 2010.

M. Bennet, A. Mccarthy, D. Fix, M. R. Edwards, F. Repp et al.,

S. Buller, D. Klumpp, and . Faivre, Influence of magnetic fields on magneto-aerotaxis, PLoS One, vol.9, p.101150, 2014.

, for measurement details, further discussion of implications and more examples of FIRSD-propellers including video material showing this behavior

A. C. Kak and M. Slaney, Principles of computerized tomographic imaging, 1988.

J. Radon, Berichte über die Verhandlungen der Königlich-Sächsischen Gesellschaft der Wissenschaften zu Leipzig, Mathematisch-Physische Klasse, p.262, 1917.

. Mathematica, , 2017.

L. Zhang, J. J. Abbott, L. Dong, K. E. Peyer, B. E. Kratochvil et al., Characterizing the swimming properties of artificial bacterial flagella, Nano Lett, vol.9, p.3663, 2009.

A. Ortega, J. G. De-la, and T. , Hydrodynamic properties of rodlike and disklike particles in dilute solution, J. Chem. Phys, vol.119, p.9914, 2003.

C. J. Serna and M. P. Morales, Maghemite (?-Fe2O3): A Versatile Magnetic Colloidal Material, 2004.

A. W. Mahoney, N. D. Nelson, K. E. Peyer, B. J. Nelson, and J. J. Abbott, Behavior of rotating magnetic microrobots above the step-out frequency with application to control of multi-microrobot systems, Appl. Phys. Lett, vol.104, p.144101, 2014.

X. Wang, C. Hu, L. Schurz, C. Marco, X. Chen et al., Surface-ChemistryMediated Control of Individual Magnetic Helical Microswimmers in a Swarm, ACS Nano, 2018.

T. A. Howell, B. Osting, and J. J. Abbott, Sorting Rotating Micromachines by Variations in Their Magnetic Properties, Phys. Rev. Appl, vol.9, p.54021, 2018.
DOI : 10.1103/physrevapplied.9.054021

URL : https://link.aps.org/accepted/10.1103/PhysRevApplied.9.054021

J. R. Gomez-solano, S. Samin, C. Lozano, P. Ruedas-batuecas, R. Van-roij et al., Tuning the motility and directionality of self-propelled colloids, Sci. Rep, vol.7, p.14891, 2017.

I. S. Khalil, A. F. Tabak, Y. Hamed, M. E. Mitwally, M. Tawakol et al., Swimming Back and Forth Using Planar Flagellar Propulsion at Low Reynolds Numbers, Adv. Sci, vol.5, p.1700461, 2017.
DOI : 10.1002/advs.201700461

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/advs.201700461

P. Katsamba and E. Lauga, Micro-Tug-of-War: A Selective Control Mechanism for Magnetic Swimmers, Phys. Rev. Appl, vol.5, p.64019, 2016.

J. García-torres, C. Calero, F. Sagués, I. Pagonabarraga, and P. Tierno, Magnetically tunable bidirectional locomotion of a self-assembled nanorod-sphere propeller, Nat. Commun, vol.9, p.1663, 2018.

M. Medina-sanchez and O. G. Schmidt, Medical microbots need better imaging and control, Nature, vol.545, p.406, 2017.

G. Kosa, P. Jakab, G. Szekely, and N. Hata, MRI driven magnetic microswimmers, Biomed. Microdevices, vol.14, p.165, 2012.

N. Kumar, V. Verma, and L. Behera, Magnetic navigation and tracking of multiple ferromagnetic microrobots inside an arterial phantom setup for MRI guided drug therapy, Biocybern. Biomed. Eng, vol.37, p.347, 2017.

K. Bente, M. Weber, M. Graeser, T. F. Sattel, M. Erbe et al., Electronic field free line rotation and relaxation deconvolution in magnetic particle imaging, IEEE Trans. Med. Imaging, vol.34, p.644, 2015.

L. D. , .. L. Landau, and E. M. Mechanik, , vol.7, 1970.

J. Happel and H. Brenner, Low Reynolds number hydrodynamics : with special applications to particulate media (M. Nijhoff ; Distributed by Kluwer

B. Hingham, . Ma, and . Usa, Mechanics of fluids and transport processes, vol.1, 1983.