P. Hohenberg and W. Kohn, Inhomogeneous electron gas Phys. Rev, vol.136, p.864, 1964.

W. Kohn and L. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev, vol.140, p.1133, 1965.
DOI : 10.1103/physrev.140.a1133

URL : http://link.aps.org/pdf/10.1103/PhysRev.140.A1133

T. Petit, C. Lemaignan, F. Jollet, B. Bigot, and A. Pasturel, Point defects in uranium dioxide Phil, Mag. B, vol.77, p.779, 1998.

T. Petit, G. Jomard, C. Lemaignan, B. Bigot, and A. Pasturel, Location of krypton atoms in uranium dioxide, J. Nucl. Mater, vol.275, p.119, 1999.

J. Crocombette, F. Jollet, T. Nga, L. Petit, and T. , Plane-wave pseudopotential study of point defects in uranium dioxide, Phys. Rev. B, vol.64, p.104107, 2001.

J. Crocombette, Ab initio energetics of some fission products (Kr, I, Cs, Sr and He) in uranium dioxide, J. Nucl. Mater, vol.305, p.29, 2002.

M. Freyss, T. Petit, and C. , Point defects in uranium dioxide: ab initio pseudopotential approach in the generalized gradient approximation, J. Nucl. Mater, vol.347, p.347, 2005.

M. Freyss, N. Vergnet, and T. Petit, Ab initio modeling of the behavior of helium and xenon in actinide dioxide nuclear fuels, J. Nucl. Mater, vol.352, p.144, 2006.

X. Liu, D. Andersson, and B. Uberuaga, First-principles DFT modeling of nuclear fuel materials, J. Mater. Sci, vol.47, p.7367, 2012.
DOI : 10.1007/s10853-012-6471-6

C. Adamo and V. Barone, Toward reliable density functional methods without adjustable parameters: the PBE0 model, J. Chem. Phys, vol.110, p.6158, 1999.

J. Heyd, G. Scuseria, and M. Ernzerhof, J. Chem. Phys, vol.118, p.8207, 2003.

I. Prodan, G. Scuseria, and R. Martin, Covalency in the actinide dioxides: systematic study of the electronic properties using screened hybrid density functional theory, Phys. Rev. B, vol.76, p.33101, 2007.

L. Petit, A. Svane, Z. Szotek, and W. Temmerman, First-principles calculations on PuO 2±x, Science, vol.301, p.498, 2003.

V. Anisimov, Z. J. Andersen, and O. , Band theory and Mott insulators: Hubbard U instead of stoner I, Phys. Rev. B, vol.44, p.943, 1991.

A. Liechtenstein, V. Anisimov, and J. Zaanen, Density-functional theory and strong interactions: orbital ordering in Mott-Hubbard insulators, Phys. Rev. B, vol.52, p.5467, 1995.

S. Dudarev, G. Botton, S. Savrasov, C. Humphreys, and A. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study, Phys. Rev. B, vol.57, p.1505, 1998.

A. Georges, G. Kotliar, W. Krauth, and M. Rozenberg, Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions, Rev. Mod. Phys, vol.68, p.13, 1996.

G. Kotliar, S. Savrasov, K. Haule, V. Oudovenko, P. O. Marianetti et al., Electronic structure calculations with dynamical mean-field theory, Rev. Mod. Phys, vol.78, p.865, 2006.
DOI : 10.1103/revmodphys.78.865

URL : http://www.physics.rutgers.edu/~gkguest/papers/rmp78_000865.pdf

P. Novák, J. Kunes, L. Chaput, and W. Pickett, Exact exchange for correlated electrons, Phys. Status Solidi b, vol.243, p.563, 2006.

E. Ylvisaker, W. Pickett, and K. Koepernik, Anisotropy and magnetism in the LSDA + U method, Phys. Rev. B, vol.79, p.35103, 2009.

M. Czy? and G. Sawatzky, Local-density functional and on-site correlations: the electronic structure of La 2 CuO 4 and LaCuO 3, Phys. Rev. B, vol.49, p.14211, 1994.

F. Zhou and V. Ozolin¸?ozolin¸ozolin¸?s, Obtaining correct orbital ground states in f-electron systems using a nonspherical self-interaction-corrected lda+u method, Phys. Rev. B, vol.80, p.125127, 2009.

O. Gunnarsson, O. Andersen, J. O. Zaanen, and J. , Density-functional calculation of the parameters in the anderson model: application to mn in cdte, Phys. Rev. B, vol.39, p.1708, 1989.

M. Cococcioni and S. De-gironcoli, Linear response approach to the calculation of the effective interaction parameters in the LDA + U method, Phys. Rev. B, vol.71, p.35105, 2005.

F. Aryasetiawan, M. Imada, A. Georges, G. Kotliar, S. Biermann et al., Frequence-dependent local interactions and low-energy effective models from electornic structure calculations, Phys. Rev. B, vol.70, p.195104, 2004.
DOI : 10.1103/physrevb.70.195104

URL : http://arxiv.org/pdf/cond-mat/0401620

K. Karlsson, F. Aryasetiawan, and O. Jepsen, Method for calculating the electronic structure of correlated materials from a truly first-principles LDA + U scheme, Phys. Rev. B, vol.81, p.245113, 2010.

T. Yamazaki and A. Kotani, Systematic analysis of 4f core photoemission spectra in actinide oxides, J. Phys. Soc. Japan, vol.60, p.49, 1991.
DOI : 10.1143/jpsj.60.49

A. Kotani and T. Yamazaki, Systematic analysis of core photoemission spectra for actinide di-oxides and rare-earth sesqui-oxides Prog, Theor. Phys. Suppl, vol.108, p.117, 1992.
DOI : 10.1143/ptps.108.117

URL : https://academic.oup.com/ptps/article-pdf/doi/10.1143/PTPS.108.117/5302114/108-117.pdf

Q. Yin, A. Kutepov, K. Haule, G. Kotliar, S. Savrasov et al., Electronic correlation and transport properties of nuclear fuel materials, Phys. Rev. B, vol.84, p.195111, 2011.
DOI : 10.1103/physrevb.84.195111

URL : https://link.aps.org/accepted/10.1103/PhysRevB.84.195111

A. Shick, W. Pickett, and A. Liechtenstein, Ground and metastable states in ? -ce from correlated band theory, J. Electron Spectrosc. Relat. Phenom, p.753, 2001.
DOI : 10.1016/s0368-2048(00)00394-7

K. Kudin, G. Scuseria, and R. Martin, Hybrid density-functional theory and the insulating gap of UO 2, Phys. Rev. Lett, vol.89, p.266402, 2002.

I. Prodan, G. Scuseria, and R. Martin, Assessment of metageneralized gradient approximation and screened coulomb hybrid density functionals on bulk actinide oxides, Phys. Rev. B, vol.73, p.45104, 2006.
DOI : 10.1103/physrevb.73.045104

P. Larson, W. Lambrecht, A. Chantis, and M. Van-schilfgaarde, Electronic structure of rare-earth nitrides using the LDA + U approach: importance of allowing 4f orbitals to break the cubic crystal symmetry, Phys. Rev. B, vol.75, p.45114, 2007.

B. Dorado, B. Amadon, M. Freyss, and M. Bertolus, , 2009.

, DFT + U calculations of the ground state and metastable states of uranium dioxide, Phys. Rev. B, vol.79, p.235125

F. Jollet, G. Jomard, B. Amadon, J. Crocombette, and D. Torumba, Hybrid functional for correlated electrons in the projector augmented-wave formalism: study of multiple minima for actinide oxides, Phys. Rev. B, vol.80, p.235109, 2009.

B. Dorado, G. Jomard, M. Freyss, and M. Bertolus, Stability of oxygen point defects in UO 2 by first-principles DFT + U calculations: occupation matrix control and Jahn-Teller distortion, Phys. Rev. B, vol.82, p.35114, 2010.

B. Amadon, A self-consistent DFT + DMFT scheme in the projector augmented wave method: applications to cerium, Ce 2 O 3 and Pu 2 O 3 with the Hubbard i solver and comparison to DFT + U, J. Phys.: Condens. Matter, vol.24, p.75604, 2012.

W. Adams, Stability of the Hartree-Fock states, Phys. Rev, vol.127, p.1650, 1962.
DOI : 10.1103/physrev.127.1650

H. Fukutome, Unrestricted Hatree-Fock theory and its applications to molecules and chemical reactions, Int. J. Quantum Chem, vol.20, p.965, 1981.
DOI : 10.1002/qua.560200502

B. Amadon, F. Jollet, and M. Torrent, Gamma and beta cerium: LDA + U calculations of ground-state parameters, Phys. Rev. B, vol.77, p.155104, 2008.

G. Jomard, B. Amadon, F. Bottin, and M. Torrent, , 2008.

, Structural, thermodynamic, and electronic properties of plutonium oxides from first principles, Phys. Rev. B, vol.78, p.75125

H. Geng, Y. Chen, Y. Kaneta, M. Kinoshita, and Q. Wu, Interplay of defect cluster and the stability of xenon in uranium dioxide from density functional calculations, Phys. Rev. B, vol.82, p.94106, 2010.

B. Meredig, A. Thompson, H. Hansen, W. C. Van-de-walle, and A. , Method for locating low-energy solutions within DFT + U, Phys. Rev. B, vol.82, p.195128, 2010.

A. Thom and M. Head-gordon, Locating multiple self-consistent field solutions: an approach inspired by metadynamics, Phys. Rev. Lett, vol.101, p.193001, 2008.

L. Pourovskii, K. Delaney, C. Van-de-walle, N. Spaldin, and A. Georges, Role of atomic multiplets in the electronic structure of rare-earth semiconductors and semimetals, Phys. Rev. Lett, vol.102, p.96401, 2009.

B. Willis, Neutron diffraction studies of the actinides oxides. I. Uranium dioxide and thorium dioxide at room temperature, Proc. R. Soc. A, vol.274, p.122, 1963.

M. Idiri, L. Bihan, T. Heathman, S. Rebizant, and J. , Behavior of actinide dioxides under pressure: UO 2 and ThO 2, Phys. Rev. B, vol.70, p.14113, 2004.

O. Brandt and C. Walker, Temperature dependence of elastic constants and thermal expansion for UO 2, Phys. Rev. Lett, vol.18, p.11, 1967.

J. Wachtman, M. Wheat, H. Anderson, and J. Bates, Elastic constants of single crystal UO 2 at 25 ? C, J. Nucl. Mater, vol.16, p.39, 1965.

M. Marlowe, High temperature isothermal elastic moduli of UO 2, J. Nucl. Mater, vol.33, p.242, 1969.

I. Fritz, Elastic properties of UO 2 at high pressure, J. Appl. Phys, vol.47, p.4353, 1976.

U. Benedict, G. Andreetti, and J. Fournier, X-ray powder diffraction study of the high pressure behaviour of uranium dioxide, J. Physique Lett, vol.43, p.171, 1982.
URL : https://hal.archives-ouvertes.fr/jpa-00232027

Y. Baer and J. Schoenes, Electronic structure and coulomb correlation energy in UO 2 single crystal Solid State Commun, vol.33, p.885, 1980.

J. Schoenes, Optical properties and electronic structure of UO 2, J. Appl. Phys, vol.49, p.1463, 1978.

J. Killeen, The effect of niobium oxide additions on the electrical conductivity of UO 2, J. Nucl. Mater, vol.88, p.185, 1980.

P. Kelly and M. Brooks, Electronic structure and ground state properties of the actinide oxides, J. Chem. Soc. Faraday Trans. 2, vol.83, p.1189, 1987.

G. Lander, J. Faber, A. Freeman, and J. Desclaux, Neutron-diffraction study of UO 2 : paramagnetic state, Phys. Rev. B, vol.13, p.1177, 1976.

P. Santini, S. Carretta, G. Amoretti, R. Caciuffo, N. Magnani et al., Multipolar interactions in f-electron systems: the paradigm of actinide dioxides, Rev. Mod. Phys, vol.81, p.807, 2009.

R. Caciuffo, G. Amoretti, P. Santini, G. Lander, K. J. et al., Magnetic excitations and dynamical Jahn-Teller distortions in UO 2, Phys. Rev. B, vol.59, p.13892, 1999.

W. Jones, G. J. Long, and E. , The heat capacities of uranium, uranium trioxide, and uranium dioxide from 15 K to 300, J. Chem. Phys, vol.20, p.695, 1952.

A. Arrott and J. Goldman, Magnetic analysis of the uranium-oxygen system, Phys. Rev, vol.108, p.948, 1957.

B. Frazer, S. G. Cox, and D. , Neutron-diffraction study of antiferromagnetism in UO 2, Phys. Rev, vol.140, p.1448, 1965.

J. Faber and G. Lander, Neutron diffraction study of UO 2 : antiferromagnetic state, Phys. Rev. B, vol.14, p.1151, 1976.

S. Allen, Spin-lattice interaction in UO 2 . I. Ground-state and spin-wave excitations, Phys. Rev, vol.166, p.530, 1968.

S. Allen, Spin-lattice interaction in UO 2 . II. Theory of the first-order phase transition, Phys. Rev, vol.167, p.492, 1968.

J. Faber, G. Lander, and B. Cooper, Neutron-diffraction study of UO 2 : observation of an internal distortion, Phys. Rev. Lett, vol.35, p.1770, 1975.

P. Burlet, J. Rossat-mignod, S. Vuevel, O. Vogt, J. Spirlet et al., Neutron diffraction on actinides J. Less-Common Met, vol.121, p.121, 1986.

K. Ikushima, S. Tsutsui, Y. Haga, H. Yauoka, R. Walstedt et al., , 2001.

, First-order phase transition in UO 2 : 235 U and 17 O NMR study, Phys. Rev. B, vol.63, p.104404

E. Blackburn, R. Caciuffo, N. Magnani, P. Santini, P. Brown et al., Spherical neutron spin polarimetry of anisotropic magnetic fluctuations in UO 2, Phys. Rev. B, vol.72, p.184411, 2005.

S. Wilkins, R. Caciuffo, C. Detlefs, J. Rebizant, E. Colineau et al., Direct observation of electric-quadrupolar order in UO 2, Phys. Rev. B, vol.73, p.60406, 2006.

A. Auskern and B. J. , Oxygen ion self-diffusion in uranium dioxide, J. Nucl. Mater, vol.3, p.267, 1961.

J. Belle, Oxygen and uranium diffusion in uranium dioxide (a review), J. Nucl. Mater, vol.30, p.3, 1969.

J. Marin and P. Contamin, Uranium and oxygen self-diffusion in UO 2, J. Nucl. Mater, vol.30, p.16, 1969.

G. Murch and C. , Oxygen diffusion in UO 2 , ThO 2 and PuO 2 -a review, J. Chem. Soc. Faraday Trans. 2, vol.83, p.1157, 1987.

B. Dorado, First-principles calculation and experimental study of oxygen diffusion in uranium dioxide, Phys. Rev. B, vol.83, p.35126, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00639167

D. Reimann and T. Lundy, Diffusion of 233 U in UO 2, J. Am. Ceram. Soc, vol.52, p.511, 1969.

H. Matzke, On uranium self-diffusion in UO 2 and UO 2+x, J. Nucl. Mater, vol.30, p.26, 1969.

H. Matzke, Atomic transport properties in UO 2 and mixed oxides (U, Pu)O 2, J. Chem. Soc. Faraday Trans, vol.83, p.1121, 1987.

A. Sabioni, W. Ferraz, and F. Millot, First study of uranium self-diffusion in UO 2 by SIMS, J. Nucl. Mater, vol.257, p.180, 1998.

P. Garcia, M. Fraczkiewicz, C. Davoisne, G. Carlot, B. Pasquet et al., Oxygen diffusion in relation to p-type doping in uranium dioxide, J. Nucl. Mater, vol.400, p.112, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00583425

A. Sabioni, W. Ferraz, and F. Millot, Effect of grain-boundaries on uranium and oxygen diffusion in polycrystalline UO 2, J. Nucl. Mater, vol.278, p.364, 2000.

B. Dorado and P. Garcia, First-principles DFT + U modeling of actinide-based alloys: application to paramagnetic phases of UO 2 and (U, Pu) mixed oxides, Phys. Rev. B, vol.87, p.195139, 2013.

B. Dorado, B. Amadon, G. Jomard, M. Freyss, and M. Bertolus, Comment on 'interplay of defect cluster and the stability of xenon in uranium dioxide from density functional calculations, Phys. Rev. B, vol.84, p.96101, 2011.

S. Dudarev, N. Mahn, D. Sutton, and A. , Effect of Mott-Hubbard correlations on the electronic structure and structural stability of uranium dioxide Phil, Mag. B, vol.75, p.613, 1997.

S. Dudarev, G. Botton, S. Savrasov, Z. Szotek, W. Temmerman et al., Electronic structure and elastic properties of strongly correlated metal oxides from first principles: LSDA + U, SIC-LSDA and EELS study of UO 2 and NiO Phys, Status Solidi a, vol.166, p.429, 1998.

Y. Yun, K. Ha, K. He, and K. Park, Ab initio calculations of strongly correlated electrons: antiferromagnetic ground state of UO 2, Nucl. Eng. Technol, vol.37, p.293, 2005.

M. Iwasawa, Y. Chen, Y. Kaneta, T. Ohnuma, H. Geng et al., First-principles calculation of point defects in uranium dioxide, Mater. Trans, vol.47, p.2651, 2006.

F. Gupta, G. Brillant, and A. Pasturel, Correlation effects and energetics of point defects in uranium dioxide: a first principle investigation Phil. Mag, vol.87, p.2561, 2007.

H. Geng, Y. Chen, Y. Kaneta, and M. Kinoshita, Structural behavior of uranium dioxide under pressure by LSDA + U calculations, Phys. Rev. B, vol.75, p.54111, 2007.

P. Nerikar, T. Watanabe, J. Tulenko, S. Phillpot, and S. Sinnott, Energetics of intrinsic point defects in uranium dioxide from electronic-structure calculations, J. Nucl. Mater, vol.384, p.61, 2009.

D. Gryaznov, E. Heifets, and E. Kotomin, Ab initio DFT + U study of he atom incorporation into UO 2 crystals, Phys. Chem. Chem. Phys, vol.11, p.7241, 2009.

J. Yu, R. Devanathan, and W. Weber, First-principles study of defects and phase transition in UO 2, J. Phys.: Condens. Matter, vol.21, p.435401, 2009.

L. Petit, A. Svane, Z. Szotek, W. Temmerman, and G. Stocks, Electronic structure and ionicity of actinide oxides from first principles, Phys. Rev. B, vol.81, p.45108, 2010.

A. Devey, First principles calculation of the elastic constants and phonon modes of UO 2 using GGA + U with orbital occupancy control, J. Nucl. Mater, vol.412, p.301, 2011.

M. Sanati, R. Albers, L. T. Saxena, and A. , Elastic constants, phonon density of states, and thermal properties of UO 2, Phys. Rev. B, vol.84, p.14116, 2011.

A. Thompson and C. Wolverton, First-principles study of noble gas impurities and defects in UO 2, Phys. Rev. B, vol.84, p.134111, 2011.

X. Tian, T. Gao, G. Jiang, D. He, and H. Xiao, The incorporation and solution of krypton in uranium dioxide: density functional theory calculations, Comput. Mater. Sci, vol.54, p.188, 2012.

F. Birch, Finite elastic strain of cubic crystals, Phys. Rev, vol.71, p.809, 1947.

Q. Yin and S. Savrasov, Origin of low thermal conductivity in nuclear fuels, Phys. Rev. Lett, vol.100, p.225504, 2008.

G. Dolling, R. Cowley, and A. Woods, The crystal dynamics of uranium dioxide Can, J. Phys, vol.43, p.1397, 1965.

R. Laskowski, G. Madsen, P. Blaha, and K. Schwarz, Magnetic structure and electric-field gradients of uranium dioxide: an ab initio study, Phys. Rev. B, vol.69, p.140408, 2004.

D. Gryaznov, S. Rashkeev, E. Kotomin, H. E. Zhukovskii, and Y. , Helium behavior in oxide nuclear fuels: first principles modeling, Nucl. Instrum. Methods B, vol.268, p.3090, 2010.

F. Zhou and V. Ozolin¸?ozolin¸ozolin¸?s, Crystal field and magnetic structure of UO 2, Phys. Rev. B, vol.83, p.85106, 2011.

P. Santini, R. Lémanski, and P. Erdös, Magnetism of actinide compounds Adv. Phys, vol.48, p.537, 1999.

P. Tiwary, A. Van-de-walle, G. , and N. , Ab initio construction of interatomic potentials for uranium dioxide across all interatomic distances, Phys. Rev. B, vol.80, p.174302, 2009.

B. Dorado, Electronic structure calculations of atomic transport properties in uranium dioxide: influence of strong correlations, 2010.

D. Andersson, B. Uberuaga, P. Nerikar, U. , C. Stanek et al., U and Xe transport in UO 2±x : density functional theory calculations, Phys. Rev. B, vol.84, p.54105, 2011.

J. Crocombette, T. D. Chartier, and A. , Charge states of point defects in uranium oxide calculated with a local hybrid functional for correlated electrons, Phys. Rev. B, vol.83, p.184107, 2011.

M. Hong, S. Phillpot, C. Lee, P. Nerikar, B. Uberuaga et al., Solubility and clustering of ruthenium fission products in uranium dioxide as determined by density functional theory, Phys. Rev. B, vol.85, p.144110, 2012.

J. Crocombette, Influence of charge states on energies of point defects and clusters in uranium dioxide, Phys. Rev. B, vol.85, p.144101, 2012.

F. Gupta, A. Pasturel, and G. Brillant, Diffusion of oxygen in uranium dioxide: a first-principles investigation, Phys. Rev. B, vol.81, p.14110, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00490063

B. Dorado, D. Andersson, C. Stanek, M. Bertolus, B. Uberuaga et al., First-principles calculations of uranium diffusion in uranium dioxide, Phys. Rev. B, vol.86, p.35110, 2012.