First-principles DFT+$U$ investigation of charged states of defects and fission gas atoms in CeO$_2$
Abstract
Cerium dioxide (CeO$_2$) is considered as a model material for the experimental study of radiation damage in the
standard nuclear fuel uranium dioxide (UO$_2$). In this paper, we present a first-principles study in the framework
of the DFT+$U$ approach to investigate the charged point defects and the incorporation of the fission gases Xe and
Kr in CeO$_2$ and compare it with published data in UO$_2$. All intrinsic charge states are considered for point defects
in contrast to previous published studies. Our calculations prove that CeO$_2$ shows similar behavior to UO$_2$ in the
formation of point defects with the same charge states under stoichiometric and nonstoichiometric conditions.
The charge states of vacancies have an important effect on the incorporation of fission gas atoms in CeO$_2$. The
bound Schottky defect with the two oxygen vacancies along the (100) direction is found to be energetically
preferable to trap Xe and Kr atoms both in CeO$_2$ and UO$_2$. Xe and Kr atoms in the cation vacancy sites under
nonformal charge states (different from 4−) in CeO$_2$, unlike in UO$_2$, lose electrons to their neighboring atoms,
which is traced back to the absence of the +5 valence state for Ce in contrast to its existence for U.
Origin : Files produced by the author(s)
Loading...