First-principles DFT+$U$ investigation of charged states of defects and fission gas atoms in CeO$_2$

Abstract : Cerium dioxide (CeO$_2$) is considered as a model material for the experimental study of radiation damage in the standard nuclear fuel uranium dioxide (UO$_2$). In this paper, we present a first-principles study in the framework of the DFT+$U$ approach to investigate the charged point defects and the incorporation of the fission gases Xe and Kr in CeO$_2$ and compare it with published data in UO$_2$. All intrinsic charge states are considered for point defects in contrast to previous published studies. Our calculations prove that CeO$_2$ shows similar behavior to UO$_2$ in the formation of point defects with the same charge states under stoichiometric and nonstoichiometric conditions. The charge states of vacancies have an important effect on the incorporation of fission gas atoms in CeO$_2$. The bound Schottky defect with the two oxygen vacancies along the (100) direction is found to be energetically preferable to trap Xe and Kr atoms both in CeO$_2$ and UO$_2$. Xe and Kr atoms in the cation vacancy sites under nonformal charge states (different from 4−) in CeO$_2$, unlike in UO$_2$, lose electrons to their neighboring atoms, which is traced back to the absence of the +5 valence state for Ce in contrast to its existence for U.
Complete list of metadatas

Cited literature [54 references]  Display  Hide  Download

https://hal-cea.archives-ouvertes.fr/cea-02063630
Contributor : Michel Freyss <>
Submitted on : Monday, March 11, 2019 - 12:58:45 PM
Last modification on : Wednesday, March 13, 2019 - 1:23:25 AM
Long-term archiving on : Wednesday, June 12, 2019 - 2:42:36 PM

File

2016_PRB94_CeO2.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Lei Shi, Emerson Vathonne, Vincent Oison, Michel Freyss, Roland Hayn. First-principles DFT+$U$ investigation of charged states of defects and fission gas atoms in CeO$_2$. Physical Review B : Condensed matter and materials physics, American Physical Society, 2016, 94, pp.115132. ⟨10.1103/PhysRevB.94.115132⟩. ⟨cea-02063630⟩

Share

Metrics

Record views

93

Files downloads

50