M. Hayns and M. Wood, On the rate theory model for fission-gas behaviour in nuclear fuels, J. Nucl. Mater, vol.59, pp.293-302, 1976.

H. J. Matzke, Gas release mechanisms in UO 2 -a critical-review

, Radiat. Eff, vol.53, pp.219-242, 1980.

H. J. Matzke, Atomic transport properties in UO 2 and mixed oxides (U, Pu)O 2, J. Chem. Soc., Faraday Trans, vol.2, pp.1121-1142, 1987.

H. J. Matzke, Diffusion Processes in Nuclear Materials

R. P. Agarwala, . Ed, and . North-holland, , 1992.

W. Miekeley and F. W. Felix, Effect of stoichiometry on diffusion of xenon in UO 2, J. Nucl. Mater, vol.42, pp.297-306, 1972.

R. Lindner and H. J. Matzke, Diffusion von Xe-133 in Uranoxyd verschiedenen Sauerstoffgehaltes, Z. Naturforsch., A: Phys. Sci, vol.14, pp.582-584, 1959.

X. Liu, D. A. Andersson, and B. P. Uberuaga, First-principles DFT modeling of nuclear fuel materials, J. Mater. Sci, vol.47, pp.7367-7384, 2012.

D. Andersson, P. Garcia, X. Liu, G. Pastore, M. Tonks et al., Atomistic modeling of intrinsic and radiation-enhanced fission gas (Xe) diffusion in UO 2±x : Implications for nuclear fuel performance modeling, J. Nucl. Mater, vol.451, pp.225-242, 2014.

A. Auskern, The diffusion of krypton-85 from uranium dioxide powder, 1960.

A. Michel, Etude du comportement des gaz de fission dans le dioxyde d'uranium: me?canismesme?canismes de diffusion, nucleátion et grossissement de bulles, 2011.

T. Petit, G. Jomard, C. Lemaignan, B. Bigot, and A. Pasturel, Location of krypton atoms in uranium dioxide, J. Nucl. Mater, vol.275, pp.119-123, 1999.

J. Crocombette, Ab initio energetics of some fission products (Kr, I, Cs, Sr and He) in uranium dioxide, J. Nucl. Mater, vol.305, pp.29-36, 2002.

A. Thompson and C. Wolverton, First-principles study of noble gas impurities and defects in UO 2, Phys. Rev. B: Condens. Matter Mater. Phys, vol.84, 2011.

X. Tian, T. Gao, G. Jiang, D. He, and H. Xiao, The incorporation and solution of krypton in uranium dioxide: Density functional theory calculations, Comput. Mater. Sci, vol.54, pp.188-194, 2012.

C. Catlow, Fission gas diffusion in uranium dioxide, Proc. R. Soc. London, Ser. A, vol.364, pp.473-497, 1978.
DOI : 10.1098/rspa.1978.0213

R. Skorek, S. Maillard, A. Michel, G. Carlot, E. Gilabert et al., Modelling Fission Gas Bubble Distribution in UO 2 . Defect Diffus, vol.323, pp.209-214, 2012.

D. Andersson, B. Uberuaga, P. Nerikar, C. Unal, and C. Stanek, Xe transport in UO 2±x : density functional theory calculations, Phys. Rev. B: Condens. Matter Mater. Phys, vol.84, p.54105, 2011.

G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B: Condens. Matter Mater. Phys, vol.59, pp.1758-1775, 1999.

P. E. Blo?-chl, Projector augmented-wave method, Phys. Rev. B: Condens. Matter Mater. Phys, vol.50, pp.17953-17979, 1994.

G. Kresse and J. Furthmu?-ller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B: Condens. Matter Mater. Phys, vol.54, pp.11169-11186, 1996.

G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B: Condens. Matter Mater. Phys, vol.47, pp.558-561, 1993.
DOI : 10.1016/0022-3093(95)00355-x

G. Kresse and J. Furthmu?-ller, Efficiency of Ab initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci, vol.6, pp.15-50, 1996.

A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Densityfunctional theory and strong interactions: Orbital ordering in MottHubbard insulators, Phys. Rev. B: Condens. Matter Mater. Phys, vol.52, 1995.

S. Dudarev, D. Manh, and A. Sutton, Effect of Mott-Hubbard correlations on the electronic structure and structural stability of uranium dioxide, Philos. Mag. B, vol.75, pp.613-628, 1997.

A. Kotani and T. Yamazaki, Systematic Analysis of Core Photoemission Spectra for Actinide Di-Oxides and Rare-Earth Sesqui-oxides, Prog. Theor. Phys. Suppl, vol.108, pp.117-131, 1992.

J. Krupa and Z. Gajek, Crystal field levels of tetravalent actinide ions in actinide dioxides UO 2 , NpO 2 and PuO 2, Eur. J. Solid State Inorg. Chem, vol.28, pp.143-146, 1991.

B. Dorado, M. Freyss, B. Amadon, M. Bertolus, G. Jomard et al., Advances in first-principles modelling of point defects in UO 2 : f electron correlations and the issue of local energy minima, Phys. Rev. B: Condens. Matter Mater. Phys, vol.25, issue.28, pp.3865-3868, 1996.
URL : https://hal.archives-ouvertes.fr/cea-02066753

M. Dion, H. Rydberg, E. Schro?-der, D. Langreth, and B. Lundqvist, Van der Waals Density Functional for General Geometries, Phys. Rev. Lett, p.246401, 2004.

J. Klimes, D. R. Bowler, and A. Michaelides, Chemical accuracy for the van der Waals density functional, J. Phys.: Condens. Matter, p.22201, 2010.

J. Klimes, D. R. Bowler, and A. Michaelides, Van der Waals density functionals applied to solids, Phys. Rev. B: Condens. Matter Mater. Phys, vol.83, 2011.

G. Teobaldi, H. Ohnishi, K. Tanimura, and A. L. Shluger, The effect of van der Waals interactions on the properties of intrinsic defects in graphite, Carbon, vol.48, pp.4145-4161, 2010.

P. L. Silvestrelli, A. Ambrosetti, S. Grubisic?, and F. Ancilotto, Adsorption of rare-gas atoms on Cu(111) and Pb(111) surfaces by van der Waals corrected density functional theory, Phys. Rev. B: Condens. Matter Mater. Phys, p.165405, 2012.

G. Zhang, A. Tkatchenko, J. Paier, H. Appel, and M. Scheffler, Van der Waals interactions in ionic and semiconductor solids, Phys. Rev. Lett, 2011.

D. Andersson, G. Baldinozzi, L. Desgranges, D. Conradson, and S. Conradson, Density Functional Theory Calculations of UO 2 Oxidation: Evolution of UO 2+x , U 4 O 9?y , U 3 O 7 , and U 3 O 8, Inorg. Chem, vol.52, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00913699

C. Gue?neaugue?neau, M. Baichi, D. Labroche, C. Chatillon, and B. Sundman, Thermodynamic assessment of the uranium-oxygen system, J. Nucl. Mater, vol.304, pp.161-175, 2002.

C. Gue?neaugue?neau, N. Dupin, B. Sundman, C. Martial, J. Dumas et al., Thermodynamic modelling of advanced oxide and carbide nuclear fuels: Description of the U-Pu-O-C systems, J. Nucl. Mater, pp.419-145, 2011.

I. Abrikosov, A. Ponomareva, P. Steneteg, S. Barannikova, and B. Alling, Recent progress in simulations of the paramagnetic state of magnetic materials, Curr. Opin. Solid State Mater. Sci, vol.20, pp.85-106, 2016.

K. Ikushima, S. Tsutsui, Y. Haga, H. Yasuoka, R. E. Walstedt et al., First-order phase transition in UO 2 : 235 U and 17 O NMR study, Phys. Rev. B: Condens. Matter Mater. Phys, vol.63, pp.125-137, 2001.

R. Laskowski, G. K. Madsen, P. Blaha, and K. Schwarz, 42) Dorado, B.; Garcia, P. First-principles DFT+U modeling of actinide-based alloys: Application to paramagnetic phases of UO 2 and (U,Pu) mixed oxides, Phys. Rev. B: Condens. Matter Mater. Phys, vol.69, p.140408, 2004.

D. Gryaznov, E. Heifets, and D. Sedmidubsky, Density functional theory calculations on magnetic properties of actinide compounds, Phys. Chem. Chem. Phys, vol.12, pp.12273-12278, 2010.

J. Boettger, Predicted spin-orbit coupling effect on the magnetic ordering of crystalline uranium dioxide, Eur. Phys. J. B, vol.36, pp.15-20, 2003.

S. Lei, Theoretical study using electronic structure calculations of uranium and cerium dioxides containing defects and impurities, 2016.

G. Henkelman and H. Jo?nssonjo?nsson, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points, J. Chem. Phys, vol.113, pp.9978-9985, 2000.

H. Monkhorst and J. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B, vol.13, pp.5188-5192, 1976.

E. Vathonne, J. Wiktor, M. Freyss, G. Jomard, and M. Bertolus, DFT+U investigation of charged point defects and clusters in UO 2, J. Phys.: Condens. Matter, vol.26, p.325501, 2014.
URL : https://hal.archives-ouvertes.fr/cea-02066524

S. B. Zhang and J. E. Northrup, Chemical potential dependence of defect formation energies in GaAs: Application to Ga self-diffusion, Phys. Rev. Lett, vol.67, pp.2339-2342, 1991.

G. H. Vineyard, Frequency factors and isotope effects in solid state rate processes, J. Phys. Chem. Solids, vol.3, pp.121-127, 1957.

R. A. Buckingham, The Classical Equation of State of Gaseous Helium, Neon and Argon, Proc. R. Soc. London, Ser. A, vol.168, pp.264-283, 1938.

G. Henkelman, B. P. Uberuaga, and H. Jonsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys, vol.113, pp.9901-9904, 2000.

A. F. Voter and . Program,

R. W. Grimes, J. Am. Ceram. Soc, vol.77, p.378, 1994.

C. R. Stanek, M. R. Bradford, and R. W. Grimes, Segregation of Ba 2+ , Sr 2+ , Ce 4+ and Zr 4+ to UO 2 surfaces, J. Phys.: Condens. Matter, vol.16, pp.2699-2714, 2004.

R. Grimes and C. Catlow, The stability of fission products in uranium dioxide, Philos. Trans. R. Soc., A, vol.335, pp.609-634, 1991.

A. B. Lidiard, Impurity Diffusion in Crystals (Mainly Ionic Crystals with the Sodium Chloride Structure), Philos. Mag, vol.46, 1218.

A. B. Lidiard, The influence of solutes on self-diffusion in metals, Philos. Mag, 1171.

H. Mehrer, Diffusion in solids: fundamentals, methods, materials, diffusion-controlled processes; Springer series in solid-state sciences

. Springer, , vol.155, 2007.

J. Manning, Correlation Factors for Impurity Diffusion. bcc, Diamond, and fcc Structures, Phys. Rev, vol.136, pp.1758-1766, 1964.
DOI : 10.1103/physrev.128.2169

P. Martin, E. Vathonne, G. Carlot, R. Delorme, C. Sabathier et al., Behavior of fission gases in nuclear fuel: XAS characterization of Kr in UO 2, J. Nucl. Mater, vol.466, pp.379-392, 2015.
URL : https://hal.archives-ouvertes.fr/cea-02066509

R. Perriot, X. Liu, C. Stanek, D. Andersson, and . Diffusion-of-zr, Sr and Ba fission products in UO 2, J. Nucl. Mater, vol.459, pp.90-96, 2015.

X. Liu, B. P. Uberuaga, D. A. Andersson, C. R. Stanek, and K. E. Sickafus, Mechanism for transient migration of xenon in UO 2, Appl. Phys. Lett, p.151902, 2011.