C. G. Bucher, H. J. Pradlwarter, and G. I. Schuëller, Computational Stochastic Structural Analysis (COSSAN), pp.301-315, 1991.

B. M. Adams, W. Bohnhoff, K. Dalbey, J. Eddy, M. Eldred et al., A multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis: version 5.0 users manual

, Validation, verification and uncertainty quantification

J. Blanchard, EPJ Nuclear Sci. Technol, vol.5, p.4, 2019.

M. Baudin, R. Lebrun, B. Iooss, and A. Popelin, Openturns: An industrial software for uncertainty quantification in simulation, Handbook of Uncertainty Quantification, pp.2001-2038, 2017.

S. Marelli and B. Sudret, UQLab: A framework for uncertainty quantification in Matlab, Proceedings, SIAM Conference on Uncertainty Quantification, pp.2554-2563, 2014.

R. Brun and F. Rademakers, Nucl. Instrum. Methods, vol.389, p.81, 1997.

E. De-rocquigny, N. Devictor, and S. Tarantola, Uncertainty in Industrial Practice: A Guide to Quantitative Uncertainty Management, 2008.

K. Martin and B. Hoffman, IEEE Software, vol.24, 2007.

T. Kluyver, B. Ragan-kelley, F. Pérez, B. Granger, M. Bussonnier et al., Jupyter notebooks À a publishing format for reproducible computational workflows, in Positioning and Power in Academic Publishing: Players, Agents and Agendas

B. Loizides and . Schmidt, , pp.87-90, 2016.

M. Feathers, B. Lepilleur, and C. Cookbook, , 2002.

J. C. Meza, R. A. Oliva, P. D. Hough, and P. J. Williams, ACM Trans. Math. Softw, vol.33, p.12, 2007.

M. Frigo and S. G. Johnson, Proc. IEEE, vol.93, 2005.

S. G. Johnson, The nlopt nonlinear-optimization package, 2008.

E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra et al.,

O. Woodall and . Mpi, Goals, concept, and design of a next generation MPI implementation, Proceedings, p.11

P. European and . Users, Group Meeting, pp.97-104, 2004.

C. Nvidia, Nvidia Corporation, vol.120, 2011.

D. Van-heesch, Doxygen: Source code documentation generator tool, 2008.

J. Blanchard, Methodological reference guide for uranie v3.11.0

M. D. Mckay, R. J. Beckman, and W. J. Conover, Technometrics, vol.42, p.55, 2000.

D. Morris and J. Mitchell, J. Stat. Plan. Inference, vol.43, p.381, 1995.

L. Pronzato and W. Muller, Stat. Comput, vol.22, p.681, 2012.

G. Damblin, M. Couplet, and B. Iooss, J. Simul, vol.7, p.276, 2013.

R. L. Iman and W. J. Conover, Commun. Stat. Simul. Comput, vol.11, p.311, 1982.

J. H. Halton, Commun. ACM, vol.7, p.701, 1964.

I. Sobol and &. Comput, Math. Math. Phys, vol.7, p.86, 1967.

K. Petras, Numer. Algorithms, vol.26, p.93, 2001.

A. De-crécy and P. Bazin, Determination of the uncertainties of the constitutive relationship of the CATHARE 2 code, 2001.

K. Fang, R. Li, and A. Sudjianto, Design and Modeling for Computer Experiments, Computer Science & Data Analysis Series, 2005.

N. Wiener, Am. J. Math, vol.60, p.897, 1938.

R. H. Cameron and W. T. Martin, Ann. Math, vol.48, p.385, 1947.

R. G. Ghanem and P. D. Spanos, Stochastic Finite Elements: A Spectral Approach, 1991.

M. Baudin and J. Martinez, Polynômes de chaos sous Scilab via la librairie NISP, 42èmes Journées de Statistique, 2010.

W. Mcculloch and W. Pitts, Bull. Math. Biophys, vol.5, p.115, 1943.

F. Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms, 1962.

C. E. Rasmussen and C. K. Williams, Gaussian Process for Machine Learning, 2006.

G. Matheron, La théorie des variables régionalisées, et ses applications, Fasicule 5 in Les Cahiers du

F. Bachoc, Estimation paramétrique de la fonction de covariance dans le modèle de krigeage par processus gaussiens: application à la quantification des incertitues en simulation numérique, vol.7, 2013.

R. M. Neal, Mcmc using hamiltonian dynamics, Handbook of Markov Chain Monte Carlo, vol.2

T. Robinson and F. Fallside, Compu. Speech Lang, vol.5, p.259, 1991.

G. E. Hinton, Prog. Brain Res, vol.165, p.535, 2007.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen et al., TensorFlow: Large-scale machine learning on heterogeneous systems, software, available from tensorflow.org, 2015.

B. Iooss and P. Lemaître, A review on global sensitivity analysis methods, Uncertainty Management in Simulation-Optimization of Complex Systems: Algorithms and Applications, pp.101-122, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00975701

, Springer Handbook on Uncertainty Quantification, 2017.

A. Saltelli, K. Chan, and E. Scott, Sensitivity Analysis, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00386559

S. D. Veiga, J. Stat. Comput. Simul, vol.85, p.1283, 2015.

B. Bettonvil and J. P. Kleijnen, Eur. J. Oper. Res, vol.96, p.180, 1997.

A. Saltelli, S. Tarantola, F. Campolongo, M. Ratto, T. Andres et al., Global Sensitivity Analysis: The Primer, 2008.

A. Saltelli, S. Tarantola, F. Campolongo, and M. Ratto, Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models, 2004.

T. Homma and A. Saltelli, Reliab. Eng. Syst. Saf, vol.52, p.1, 1996.

G. Mcrae, J. Tilden, and J. Seinfeld, Comput. Chem. Eng, vol.6, p.15, 1982.

A. Saltelli and R. Bolado, Comput. Stat. Data Anal, vol.26, p.445, 1998.

A. Saltelli, Comput. Phys. Commun, vol.145, p.280, 2002.

H. Monod, C. Naud, and D. Makowski, Uncertainty and sensitivity analysis for crop models, Working with Dynamic Crop Models: Evaluation, Analysis, Parameterization, 2006.

J. Martinez, Analyse de sensibilité globale par décompo-sition de la variance, GdR Ondes et Mascot Num, 2011.

R. Iman, M. Shortencarier, and J. Johnson, FORTRAN 77 program and users guide for the calculation of partial correlation and standardized regression coefficients, 1985.

S. Tarantola, D. Gatelli, and T. Mara, Reliab. Eng. Syst. Saf, vol.91, p.717, 2006.

J. Tissot and C. Prieur, Reliab. Eng. Syst. Saf, vol.107, p.205, 2012.

M. D. Mckay, J. D. Morrison, and S. C. Upton, Comput. Phys. Commun, vol.117, p.44, 1999.

T. Mara and O. Joseph, J. Stat. Comput. Simul, vol.78, p.167, 2008.

A. B. Owen, A. J. Siam/, and . Uncertain, Quantif, vol.2, p.245, 2014.

P. Lemaître, E. Sergienko, A. Arnaud, N. Bousquet, F. Gamboa et al., J. Stat. Comput. Simul, vol.85, p.1200, 2015.

D. R. Jones, M. Schonlau, and W. J. Welch, J. Glob. Optim, vol.13, p.455, 1998.

X. Zhang, Y. Tian, and Y. Jin, IEEE Trans. Evol. Comput, vol.19, p.761, 2015.

E. Zitzler and S. Künzli, Indicator-based selection in multiobjective search, International Conference on Parallel Problem Solving from Nature, pp.832-842, 2004.

Q. Zhang and H. Li, IEEE Trans. Evol. Comput, vol.11, p.712, 2007.

U. Drepper, What Every Programmer Should Know About Memory, 2007.

M. J. Bayarri, J. O. Berger, R. Paulo, J. Sacks, J. A. Cafeo et al., Technometrics, vol.49, p.138, 2007.

M. C. Kennedy, A. O'hagan, and J. R. , Stat. Soc, vol.63, p.425, 2001.

F. Bachoc, G. Bois, J. Garnier, and J. Martinez, Nucl. Sci. Eng, vol.176, p.81, 2014.

G. Casella and E. I. George, Am. Stat, vol.46, p.167, 1992.

S. Chib and E. Greenberg, Am. Stat, vol.49, p.327, 1995.

Y. Zhao, T. Ono, . Struct, and . Saf, , vol.21, p.95, 1999.

A. M. Hasofer and N. C. Lind, J. Eng. Mech. Div, vol.100, p.111, 1974.

S. Au and J. L. Beck, Probab. Eng. Mech, vol.16, p.263, 2001.

X. Huang, J. Chen, and H. Zhu, Struct. Saf, vol.59, p.86, 2016.

A. N. Kolmogorov, Giornale dell'Istituto Italiano degli Attuari, vol.4, p.83, 1933.

T. W. Anderson and D. A. Darling, Ann. Math. Stat, vol.23, p.193, 1952.

T. W. Anderson, Ann. Math. Stat, vol.33, p.1148, 1962.

S. Nanty, C. Helbert, A. Marrel, N. Pérot, and C. Prieur, Comput. Stat, vol.32, p.559, 2017.

J. Blanchard, G. Damblin, J. Martinez, G. Arnaud, and F. Gaudier, The Uranie platform: an open-source software for optimisation, meta-modelling and uncertainty analysis, EPJ Nuclear Sci. Technol, vol.5, p.4, 2019.
URL : https://hal.archives-ouvertes.fr/cea-02052632