J. D. Wall and L. R. Krumholz, Uranium reduction, Annu Rev Microbiol, vol.60, pp.149-166, 2006.

J. K. Fredrickson and J. M. Zachara, Electron transfer at the microbe-mineral interface: a grand challenge in biogeochemistry, Geobiology, vol.6, pp.245-253, 2008.

D. R. Lovley, T. Ueki, T. Zhang, N. S. Malvankar, and P. M. Shrestha, Geobacter: the microbe electric's physiology, ecology, and practical applications, Adv Microb Physiol, vol.59, pp.1-100

D. F. Ackerley, C. F. Gonzalez, M. Keyhan, R. Blake, and A. Matin, Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction, Environ Microbiol, vol.6, pp.851-860, 2004.

D. F. Ackerley, C. F. Gonzalez, C. H. Park, R. Blake, and M. Keyhan, Chromate-reducing properties of soluble flavoproteins from Pseudomonas putida and Escherichia coli, Appl Environ Microbiol, vol.70, pp.873-882, 2004.

M. Keyhan, D. F. Ackerley, and A. Matin, Targets of improvement in bacterial chromate bioremediation, 2004.

Y. Barak, D. F. Ackerley, C. J. Dodge, L. Banwari, and A. C. , Analysis of novel soluble chromate and uranyl reductases and generation of an improved enzyme by directed evolution, Appl Environ Microbiol, vol.72, pp.7074-7082, 2006.

X. L. Shi and N. S. Dalal, NADPH-dependent flavoenzymes catalyze one electron reduction of metal ions and molecular oxygen and generate hydroxyl radicals, FEBS Lett, vol.276, pp.189-191, 1990.

D. F. Ackerley, Y. Barak, S. V. Lynch, J. Curtin, and A. Matin, Effect of chromate stress on Escherichia coli K-12, J Bacteriol, vol.188, pp.3371-3381, 2006.

C. F. Gonzalez, D. F. Ackerley, C. H. Park, and A. Matin, A soluble flavoprotein contributes to chromate reduction and tolerance by Pseudomonas putida, Acta Biotechnologica, vol.23, pp.233-239, 2003.

G. J. Puzon, J. N. Petersen, A. G. Roberts, D. M. Kramer, and L. Xun, A bacterial flavin reductase system reduces chromate to a soluble chromium(III)-NAD(+) complex, Biochem Biophys Res Commun, vol.294, pp.76-81, 2002.

Y. Barak, S. H. Thorne, D. F. Ackerley, S. V. Lynch, and C. H. Contag, New enzyme for reductive cancer chemotherapy, YieF, and its improvement by directed evolution, Mol Cancer Ther, vol.5, pp.97-103, 2006.

S. H. Thorne, Y. Barak, W. Liang, M. H. Bachmann, and J. Rao, CNOB/ ChrR6, a new prodrug enzyme cancer chemotherapy, Mol Cancer Ther, vol.8, pp.333-341, 2009.

C. F. Gonzalez, D. F. Ackerley, S. V. Lynch, and A. Matin, ChrR, a soluble quinone reductase of Pseudomonas putida that defends against H2O2, J Biol Chem, vol.280, pp.22590-22595, 2005.

Y. Barak, Y. Nov, D. F. Ackerley, and A. Matin, Enzyme improvement in the absence of structural knowledge: a novel statistical approach, ISME J, vol.2, pp.171-179, 2008.

O. P. Kuipers, H. J. Boot, and W. M. De-vos, Improved site-directed mutagenesis method using PCR, Nucleic Acids Res, vol.19, p.4558, 1991.

C. H. Park, M. Keyhan, B. Wielinga, S. Fendorf, and A. Matin, Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase, Appl Environ Microbiol, vol.66, pp.1788-1795, 2000.

Z. Otwinowski, D. Borek, W. Majewski, and W. Minor, Multiparametric scaling of diffraction intensities, Acta Crystallogr A, vol.59, pp.228-234, 2003.

R. Agarwal, J. B. Bonanno, S. K. Burley, and S. Swaminathan, Structure determination of an FMN reductase from Pseudomonas aeruginosa PA01 using sulfur anomalous signal, Acta Crystallogr D Biol Crystallogr, vol.62, pp.383-391, 2006.

A. Perrakis, R. Morris, and V. S. Lamzin, Automated protein model building combined with iterative structure refinement, Nat Struct Biol, vol.6, pp.458-463, 1999.

T. A. Jones, J. Y. Zou, S. W. Cowan, and M. Kjeldgaard, Improved methods for building protein models in electron density maps and the location of errors in these models, Acta Crystallogr A, vol.47, issue.2, pp.110-119, 1991.

A. T. Brunger, P. D. Adams, G. M. Clore, W. L. Delano, and P. Gros, Crystallography & NMR system: A new software suite for macromolecular structure determination, Acta Crystallogr D Biol Crystallogr, vol.54, pp.905-921, 1998.

J. Carey, J. Brynda, J. Wolfova, R. Grandori, and T. Gustavsson, WrbA bridges bacterial flavodoxins and eukaryotic NAD(P)H:quinone oxidoreductases, Protein Sci, vol.16, pp.2301-2305, 2007.

S. Deller, S. Sollner, R. Trenker-el-toukhy, I. Jelesarov, and G. M. Gubitz, Characterization of a thermostable NADPH:FMN oxidoreductase from the mesophilic bacterium Bacillus subtilis, Biochemistry, vol.45, pp.7083-7091, 2006.

A. Binter, N. Staunig, I. Jelesarov, K. Lohner, and B. A. Palfey, A single intersubunit salt bridge affects oligomerization and catalytic activity in a bacterial quinone reductase, FEBS J, vol.276, pp.5263-5274, 2009.

J. Ye, H. C. Yang, B. P. Rosen, and H. Bhattacharjee, Crystal structure of the flavoprotein ArsH from Sinorhizobium meliloti, FEBS Lett, vol.581, pp.3996-4000, 2007.

T. M. Gihring, G. X. Zhang, C. C. Brandt, S. C. Brooks, and J. H. Campbell, A Limited Microbial Consortium Is Responsible for Extended Bioreduction of Uranium in a Contaminated Aquifer, Applied and Environmental Microbiology, vol.77, pp.5955-5965, 2011.

K. E. Scherr, M. Nahold, and A. P. Loibner, A novel two-step treatment for the in situ bioremediation of chlorinated aliphatic hydrocarbons, Journal of Biotechnology, vol.150, pp.47-47, 2010.

M. P. Devi, M. V. Reddy, A. Juwarkar, P. N. Sarma, and S. Mohan, Effect of Coculture and Nutrients Supplementation on Bioremediation of Crude Petroleum Sludge, Clean-Soil Air Water, vol.39, pp.900-907, 2011.