L. Shen, Genetic analysis of quantitative phenotypes in AD and MCI: imaging, cognition and biomarkers, Brain Imaging and Behavior, vol.8, issue.2, pp.183-207, 2014.

F. S. Nathoo, L. Kong, and H. Zhu, A Review of Statistical Methods in Imaging Genetics, 2018.

A. Tenenhaus and M. Tenenhaus, Regularized Generalized Canonical Correlation Analysis, Psychometrika, vol.76, issue.2, pp.257-284, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00609220

A. Tenenhaus, Variable selection for generalized canonical correlation analysis, Biostatistics, vol.15, issue.3, pp.569-583, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01071432

D. M. Witten, R. J. Tibshirani, and T. Hastie, A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis, Biostatistics, vol.10, issue.3, pp.515-534, 2009.

L. Du, Structured sparse canonical correlation analysis for brain imaging genetics: an improved GraphNet method, Bioinformatics, vol.32, issue.10, pp.1544-1551, 2016.

P. M. Visscher, 10 Years of GWAS Discovery: Biology, Function, and Translation, The American Journal of Human Genetics, vol.101, issue.1, p.2017

C. Azencott, Network-Guided Biomarker Discovery, Machine Learning for Health Informatics: State-of-the-Art and Future Challenges, A. Holzinger, pp.319-336, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01427118

M. Hofree, Network-based stratification of tumor mutations, Nature Methods, vol.10, issue.11, p.2013

T. Löfstedt, Structured Variable Selection for Regularized Generalized Canonical Correlation Analysis, pp.129-139, 2016.

M. Tenenhaus, A. Tenenhaus, and P. J. Groenen, Regularized Generalized Canonical Correlation Analysis: A Framework for Sequential Multiblock Component Methods, Psychometrika, vol.82, issue.3, p.2017
URL : https://hal.archives-ouvertes.fr/hal-01630730

L. Grosenick, Whole-brain Sparse Penalized Discriminant Analysis for Predicting Choice, NeuroImage, vol.47, p.58, 2009.

A. Beck and M. Teboulle, A Fast Iterative ShrinkageThresholding Algorithm for Linear Inverse Problems, SIAM Journal on Imaging Sciences, vol.2, issue.1, pp.183-202, 2009.

V. Escott-price, Common polygenic variation enhances risk prediction for Alzheimers disease, Brain, vol.138, issue.12, p.2015

H. Fang, B. Knezevic, K. L. Burnham, and J. C. Knight, XGR software for enhanced interpretation of genomic summary data, illustrated by application to immunological traits, Genome medicine, vol.8, issue.1, p.129, 2016.

M. Lorenzi, Susceptibility of brain atrophy toTRIB3in Alzheimer's disease, evidence from functional prioritization in imaging genetics, PNAS, vol.115, issue.12, pp.3162-3167, 2018.