S. Sarao-mannelli, G. Biroli, C. Cammarota, F. Krzakala, P. Urbani et al., Marvels and pitfalls of the langevin algorithm in noisy high-dimensional inference, 2018.

K. Kawaguchi, Deep learning without poor local minima, Advances in Neural Information Processing Systems, pp.586-594, 2016.

D. Soudry and Y. Carmon, No bad local minima: Data independent training error guarantees for multilayer neural networks, 2016.

R. Ge, J. D. Lee, and T. Ma, Matrix completion has no spurious local minimum, Advances in Neural Information Processing Systems, pp.2973-2981, 2016.

D. Freeman and J. Bruna, Topology and geometry of half-rectified network optimization, 2016.

S. Bhojanapalli, B. Neyshabur, and N. Srebro, Global optimality of local search for low rank matrix recovery, Advances in Neural Information Processing Systems, pp.3873-3881, 2016.

D. Park, A. Kyrillidis, C. Carmanis, and S. Sanghavi, Non-square matrix sensing without spurious local minima via the Burer-Monteiro approach, In Artificial Intelligence and Statistics, pp.65-74, 2017.

J. D. Simon-s-du, Y. Lee, B. Tian, A. Poczos, and . Singh, Gradient descent learns one-hidden-layer cnn: Don't be afraid of spurious local minima, 2017.

R. Ge, C. Jin, and Y. Zheng, No spurious local minima in nonconvex low rank problems: A unified geometric analysis, Proceedings of the 34th International Conference on Machine Learning, pp.1233-1242, 2017.

H. Lu and K. Kawaguchi, Depth creates no bad local minima, 2017.

. Yan-v-fyodorov, Complexity of random energy landscapes, glass transition, and absolute value of the spectral determinant of random matrices, Physical review letters, vol.92, issue.24, p.240601, 2004.

G. Ben-arous, S. Mei, A. Montanari, and M. Nica, The landscape of the spiked tensor model, 2017.

A. Crisanti, H. Horner, and . Sommers, The spherical p-spin interaction spin-glass model, Zeitschrift für Physik B Condensed Matter, vol.92, issue.2, pp.257-271, 1993.

F. Leticia, J. Cugliandolo, and . Kurchan, Analytical solution of the off-equilibrium dynamics of a long-range spin-glass model, Physical Review Letters, vol.71, issue.1, p.173, 1993.

. Iain-m-johnstone, On the distribution of the largest eigenvalue in principal components analysis, Annals of statistics, pp.295-327, 2001.

E. Richard and A. Montanari, A statistical model for tensor PCA, Advances in Neural Information Processing Systems, pp.2897-2905, 2014.

J. Robert, J. E. Adler, and . Taylor, , 2009.

. Yan-v-fyodorov, High-dimensional random fields and random matrix theory, Markov Processes Relat. Fields, vol.21, pp.483-518, 2015.

V. Ros, G. Ben-arous, G. Biroli, and C. Cammarota, Complex energy landscapes in spiked-tensor and simple glassy models: Ruggedness, arrangements of local minima, and phase transitions, Physical Review X, vol.9, issue.1, p.11003, 2019.

F. Antenucci, S. Franz, P. Urbani, and L. Zdeborová, On the glassy nature of the hard phase in inference problems, 2018.
URL : https://hal.archives-ouvertes.fr/cea-01930645

G. Ben-arous, A. Dembo, and A. Guionnet, Cugliandolo-Kurchan equations for dynamics of spin-glasses, Probability theory and related fields, vol.136, pp.619-660, 2006.

A. David-l-donoho, A. Maleki, and . Montanari, Message-passing algorithms for compressed sensing, Proceedings of the National Academy of Sciences, vol.106, issue.45, pp.18914-18919, 2009.

A. Javanmard and A. Montanari, State evolution for general approximate message passing algorithms, with applications to spatial coupling. Information and Inference: A, Journal of the IMA, vol.2, issue.2, pp.115-144, 2013.

T. Lesieur, F. Krzakala, and L. Zdeborová, Constrained low-rank matrix estimation: Phase transitions, approximate message passing and applications, Journal of Statistical Mechanics: Theory and Experiment, vol.2017, issue.7, p.73403, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01447222

A. Montanari, Graphical models concepts in compressed sensing, Compressed Sensing: Theory and Applications, pp.394-438, 2012.

F. Ricci-tersenghi, G. Semerjian, and L. Zdeborová, Typology of phase transitions in bayesian inference problems
URL : https://hal.archives-ouvertes.fr/cea-01933097