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The renormalizability of the self-avoiding manifold Edwards model is established. We use a new short
distance multilocal operator product expansion, which extends methods of local field theories to a large
class of models with nonlocal singular interactions. This validates the direct renormalization method in-

troduced before, as well as scaling laws. A new general hyperscaling relation is derived. Manifolds at
the 8 point and long-range Coulomb interactions are briefly discussed.

PACS numbers: 05.20.—y, 11.10.6h, 11.25.—w

The statistical mechanics of fluctuating surfaces has at-
tracted much attention in recent years with applications
in many areas of physics from string theories in high en-

ergy physics to interface and membrane problems in soft
condensed matter physics and biophysics [I]. In particu-
lar, tethered surfaces, which model polymerized flexible
membranes, have unusual and interesting elastic proper-
ties. While these properties are now well understood
theoretically for "phantom membranes, " that is, when
self-avoidance (SA) interactions are ignored, the conse-
quence of incorporating SA constraints to describe real
membranes is still an open problem. In practice, the
search for a consistent theoretical treatment of SA in-

teractions raises the fundamental question of applying re-
normalization group (RG) methods to extended objects,
which is the issue addressed here.

The theoretical study of SA polymerized membranes is

centered around a model of tethered self-avoiding mani-
folds (SAM) [2,3] directly inspired by the Edwards mod-
el for polymers [4]. The surfaces are generalized to in-
trinsically D-dimensional manifolds, representing D-
dimensional connected networks, whose nodes, labeled by
internal continuous coordinates x E IR, are embedded in
external d-dimensional space with position vector r(x)
E IR . The associated continuum Hamiltonian S' is

/f/ktt T = —J"d x [&„r(x)1
1

2

+ —
J~ d x„d x'b' (r(x) —r(x')),

with an elastic Gaussian term and a self-avoidance two-

body 8 potential with excluded volume parameter b & 0,
nonlocal in "manifold space" IR .

A finite upper critical dimension (UCD) d* for the SA
interaction exists only for manifolds with a continuous
internal dimension 0 & D & 2. Phantom manifolds (b
=0) are crumpled with a finite Hausdorff dimension
dH=2D/(2 D), and d* =2—dH. In [2,3,5] an e expan-
sion about d* was performed via a direct renormalization
(DR) method adapted from polymer theory [6]. But

many issues remain unanswered: The consistency of the
DR method is proven only for D=1 by the famous map-

ping of (I) onto a (zero component) (@2)2(r) field

theory in external d-dimensional space [7]. When D&I,
model (I) can no longer be mapped onto a local field

theory, and the validity of RG methods and of scaling
laws has been justified only at leading order through ex-
plicit partial resummations [8]. The questions of a prop-
er treatment for boundaries and of the value of the
configuration exponent y [5] are also open.

In this Letter, we introduce a flexible formalism that
allows us to prove the validity of the RG approach to
self-avoiding manifolds, as well as to a larger class of
manifold models with nonlocal interactions. It broadly
extends a recent work by the authors [9] for a simpler
model [10], with a local singular interaction, of a phan-
tom manifold interacting with a single impurity [11].
The present formalism is based on a new operator prod-
uct expansion involving multilocal singular operators,
and allows for a systematic analysis of the short distance
ultraviolet (uv) singularities of the model. At the critical
dimension d*, we can classify all the relevant operators
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and show that the model (I) is renormalizable to all or
ders by renormalizations (i) of the coupling b and (ii) of
the position field r. As a consequence, we establish the
validity of scaling laws for infinite membranes, as well as
the existence of finite size scaling laws for finite mem-
branes. The latter result ensures the consistency of the
DR approach. A surprising result, which distinguishes
manifolds with noninteger D from open linear polymers,
is the absence of boundary operator renormalization,
leading to the general hyperscaling relation

y =1 —vd, (2)

valid for finite SAM with D (2, D~1. Another surprise
when considering SAM at the 8 point is the appearance
of a new relevant interaction term, which can supersede
the usual three-body term.

Perturbation theory. —For infinite SA manifolds, phys-
ical observables are expressible in terms of the P-point
correlation functions, whose perturbative expansions are

!
formally

(Qe' ' ' " =—g g d x; g e ' ' g 8 (r(x2 ) —r(x2, -l))
I 1 Z N~O 2 N! i~i I~i a I 0

(3)

The right hand side average ( )o is performed with respect to the ideal Gaussian manifold (b=0). The partition
function Z in the denominator has a similar perturbative expansion in b, but with no external points. The product of 8
functions in (3) can be written in terms of exponential operators as

(Qe ' '"' =exp ——gk; kJG;
i 0 2ij

(s)

where G~i
= —

!x; —xj! /(2 D)So is the —massless

propagator (Coulomb potential in D dimensions), with

So =2m /I (D/2). Integration over the momenta k;
then gives for the Nth term of (3) the manifold integral

gd x;6 t exp ——g qiq
i l 2 I,ppg~i

(6)

where &{x;j is the determinant associated with the quad-

ratic form (now on IR) Q{k;j=+2J-lk;kJGJ restricted to
the vector space defined by the N neutrality constraints
8,{k;j, k2, +k2, l =0, and At~ is a similar determinant
involving also the external points zi and z [8].

Note that a proper analytic continuation in D of (6) is

ensured from [9] by the use of distance geometry, where

the Euclidean measure over the x; is understood as the
corresponding measure over the mutual squared distances

a;~ =!x;—xl!, a distribution analytic in D.
Singular configurations The int.e—grand in (6) is

singular when the determinant 6{x;j(0. The associated
quadratic form Q{k;j, restricted by the neutrality con-
straints C, {k;j, is the electrostatic energy of a gas of
charges k; located at x;, and constrained to form W neu-

tral pairs a of charges (dipoles). For such a globally neu-

tral gas, the Coulomb energy is minimal when the charge
density is zero everywhere, i.e., when the nonzero charges

N 2N ddk N 2N

Q 8"(r(x2, ) —r(x2, —l)) = g ' + C, {k;joe
a i ~ I 2Z a~ I i~ l

with lV "dipolar constraints" C, {k;j=(2tr) b (k2, —
l

+k2, ) for momenta k; E IR (later called "charges") as-

signed to the points x;. The correlation function (3) is

defined as translationally invariant in external space, i.e.,

with the "neutrality rule" pt-lqi =0, a condition which

is necessary when dealing with infinite membranes to
avoid infrared (ir) singularities. The Gaussian average in

(3) is easily performed, using the identity
II'

(4)

k; aggregate into neutral "atoms. " When 0 (D ( 2, the

corresponding minimal energy is furthermore zero, which

implies that the quadratic form Q is non-negative and

thus A) 0. Singular {x;j configurations, with 8, =0, still

exist when Q is degenerate, which happens when some di-

poles are assembled in such a way that, with appropriate
nonzero charges, they still can build neutral atoms. This
requires some of the points x; to coincide and the corre-
sponding dipoles to form at least one closed loop (Fig. I).
This ensures that the only sources of divergences are
short distance singularities, and extends the Schoenberg
theorem used in [9].

Multilocal operator product expansion —A singula. r

configuration can thus be viewed as a connected "mole-
cule, " characterized by a set A. of atoms p with assigned
positions x~, and by a set X of links a between these
atoms, representing the dipolar constraints C, . For each

p, we denote by P~ the set of charges i, at x;, which build

x

(b)

(~) (~) (e)
F'IG. 1. A general diagram with two external points and

three internal dipoles. (a) "Molecules" describing singolar
configurations with one (b), two (c) and (d), and three (e)
"atoms. " (b)-(d) give uv divergences; (e) does not.
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the atom p and define y; =x; —x~ for i 6 P~. The short
distance singularity of 6 is analyzed by performing a
small y; expansion of the product of the bilocal operators
p(x, x')—=b (r(x) —r(x')) for the links a E L, in the
Gaussian manifold theory [Eq. (3)]. As will be shown

below, this expansion around A can be written as a mul-
tilocal operator product expansion (MOPE)

Q v (xz. ,x2. )) =Qe[xp}C, . . .,[y;}, (7)
ad/

where the sum runs over all multilocal operators 4 of the
form

4[x~}- d r g [ [(V„) 'b"(r —r(x~))]A (x )'}

!
(8)

Here A~(xe)—=A '' (V„,r(x~)) is a local operator at
point x~, which is a product of x derivatives of the field r,
of degree se in r(x~) and degree r~ ~ s~ in V„. (V,) '
denotes a product of qp derivatives with respect to r, act-
ing on b (r —r(x~)). The symbol "::"denotes the nor
mal product subtraction prescription at x~ (which, in a
Gaussian average, amounts to setting to zero any deriva-
tive of the propagator 6;J at coinciding points x;=xj
=xt, ). For Card(AI)=!AI! & 1, (8) describes the most
general !AI!-body contact interaction between the points
xe, with possible inserted local operators Ar(xr) at each
point xr. For !At! I, it reduces to a local operator
Ap(xp).

The coeScient associated with the operator 4 in the
MOPE, C~. . . ~[y;},can be written as an integral over the
momenta k;,

C„.. . {y}- g C [k} Q . g dk;, (V)'b g k;,C'[yk} p
——g k; kG;.

aGX pGAt iEP& i GPp 2t j EPp
(9)

where C [y;,k;} is a monomial associated with the operator At„of similar global degree r~ in the y;, and se in the k;.
The product P' is over all constraints a C X but one.

The MOPE (7) follows from the expression (4) in terms of free field exponentials plus constraints. For each p, we use
the general small y; local operator product identity

exp[ik; r(x;) l!„,-„,:exp ——g k;. kjG(y;, yj )
1

l,jG pp
(IO)

When expanded in the y;, the normal product:( )!„,-„:
in (10) gives a sum P~C"[y;,k;}:A(xe)e' ' ': [denoting

ke g;~ p, k; and rz =—r(xe)] which generates the local
operators A(x~) and the monomials C" of (8) and (9).
We insert the identity I —=j d k~ b (kr —P; c p k;) in (4)
for each atom p C AI, rewrite one of the dipolar con-
straints as a global neutrality constraint b (Pt, ~ ~kt, ) on
the k~, and expand each b"(k~ —g;~ p k;) in powers of
kp. Finally by integrating over the kp, the constraint
b (Pt, &~kz) builds the multilocal !At!-body operator
4[x~} and we obtain the MOPE (7), (8), and (9).

Power counting and renormalization The M.—OPE
(7) allows us to determine those singular configurations
which give rise to actual uv divergences in the manifold
integral (6). Indeed, given a singular configuration At
and integrating over the domain where the relative posi-
tions y; =x; —x~ are of order !y;!&p, we can use the
MOPE of (4) to obtain an expansion of the integrand in
(3) in powers of p. Each coefficient C„.. . ~ gives a contri-
bution of order p, with degree co given by power count-
ing,

to=D[21&!—!AI!}+dvo[!AI!—!X!—1}

+ g [vo(q~ —se)+r~},
p 6 At

with vo=(2 —D)/2& I and r~~ s~. Whenever to~0, a
uv divergence occurs, as a factor multiplying the insertion
of the corresponding operator N. At the upper critical di-
mension d* =2D/vo, t0 becomes independent of the num-

ber !X! of dipoles, and is equal to the canonical dimen-
sion to~ of f+~d x@ in the Gaussian theory. Three
relevant operators with toq ~ 0 and such that the corre-
sponding coefficient does not vanish by symmetry, are
found by simple inspection. Two of these operators are
marginal (co&, =0): (i) the two-body SA interaction term
b (r~ —r~) itself, obtained through singular configura-
tions with! AI! -2 atoms (and with q =r =s =0 for p and
p'); and (ii) the one-body local elastic term:(Vrz) 2:, ob-
tained for !AI! = I (q =0, r =s =2). The third operator is

relevant with roc, = D, and is just the —identity operator
I obtained when !Al!= I (q =r =s =0). It gives "free en-
ergy" divergences proportional to the manifold volume,
which cancel out in ir finite observables (3).

The above analysis deals with superficial uv diver
genres only. A complete analysis of the general uv singu-
larities associated with successive contractions toward
"nested" singular configurations can be performed, using
the techniques of [9] and the fact that an iteration of the
MOPE only generates multilocal operators of the type
(8). The results are as follows: (i) that the observables
(3) are uv finite for d & d*(D), and are meromorphic
functions in d with poles at d =d*; (ii) that a renormal-
ization operation, similar to the subtraction operation of
[91, can be achieved to remove these poles; and (iii) that
this operation amounts to a renormalization of the Ham-
iltonian (1). More explicitly the renormalized correla-
tion functions (Q/-~e' ' "

)R have a finite perturba-
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tive expansion in the renormalized coupling bR, when ( . )R is the average with respect to the renormalized Hamil-
toll i an

/fR/kt/T= — d x[V„rR(x)] + b—Rp'Zb d x d x'6 (rR(x) —rR(x')) . (12)

p is a renormalization (internal) momentum scale, e=2D
—dvo, and Zb(bR) and Z(bR) are, respectively, the cou-
pling constant and the field renormalization factors,
singular at e =0. At first order, we find by explicitly cal-
culating C~ ' and C~~ that Z= 1+bR(B/e)(2 —D) /
2D, Zs =1+bR(B/e) 1 (D/(2 —D) )/r(2D/(2 —D) ),

(4tr)
—d/2g 2+d/2(2 D)

—l+d/2 For
quantities which are not ir finite, which we discuss later,
an additive counterterm proportional to the volume of the
manifold (corresponding to the relevant identity operator
1) ls also llecessal y.

Expressing the observables of the SAM model (1) in

terms of renormalized variables r=Z' rR, b =bRp'Zb
x Z /, one can derive in the standard way RG equations
involving Wilson's functions lV(b R) =p (tlitlti )b R lb.
v(bR) =vie ——,

'
p 8lnZ/tlp~b. A nontrivial ir fixed point

bR ~t. is found for t. &0. It governs the large distance
behavior of the SA infinite manifold, which obeys scaling
laws characterized by the exponent v, defined for instance
through the two-point function ([r(x) —r(0)] ) ee ~x~ '.
The value obtained in this approach, v=v(bR), corro-
borates that obtained in [2,3,8] at first order in e.

Finite size scalI.'ng and direct renormalization. —The
DR formalism requires one to consider finite manifolds
with "internal volume" V, and to express scaling func-
tions in terms of a dimensionless second virial coefficient
g= —Ro Z2, ,/(Zl), where Zl(V) and Z2, (V) are, re-

spectively, the one- and two-membrane (connected) par-
tition functions, and Ro is the radius of gyration.

When dealing with a finite closed manifold (for in-

stance the D-dimensional sphere So [9]), characterized

by its (in general curved) internal metric, the massless

propagator G;/ gets modified. Nevertheless, from (10)
and the short distance expansion of G;/ in a general
metric [12], one can show that the short distance MOPE
(7) remains valid, provided that the sum is extended to
include multilocal operators 4 still of the form (8), but
with local operators A(x) involving also the Riemann
curvature tensor and its derivatives, with appropriate
coefficients C~. . . ~. A crucial point is that in the MOPE
the dependence on the geometry of the manifold (size,
curvature, etc. ) is encoded only in the expectation values

(. . .@.. . )0 of the multilocal operators A, while the short
distance behavior (y; 0) of coefficients C~. . . „[y;] isin
dependent of the geometry. Thus, at d*, uv divergences
still come with insertions of relevant multilocal operators
with co~ ~ 0.

When 0 & D & 2, none of the new operators involving

the curvature is found to be relevant by power counting.
Therefore, the infinite membrane counterterms Z and Zb
still renormalize the finite membrane theory. Since, as
for finite size scaling [13], the manifold size is not renor-

314

Z, (V) = n[r]b'(r(0))e """-V'r '"
to the exponent v. Indeed, from (13), once the free ener-

gy divergent term has been subtracted, Zl is simply mul-

tiplicatively renormalized as Zl (b, V) =Z Zl" (bR,
Vp ). This validates the scaling hypothesis that Zl
—~r~ —V " /, and leads directly to (2).

For open SAM with free boundaries, and when

I ~ D &2, the boundary operator fbo„„d,,rd 'x 1 be-

comes relevant. Since it is simply a geometrical quantity,
it cannot modify the renormalizations of r and b. Furth-
ermore, it is marginally relevant only for D=1 [5] and,
therefore, as long as Da1 the scaling laws and the hyper-
scaling relation (2) remain valid Only at D.= 1 does the

corresponding end-point counterterm enter the multipli-
cative renormalization of Zl, and y becomes an indepen-
dent exponent, with an extra contribution from the two

end points.
Equation (2) has been checked explicitly at order e for

the sphere SD and the torus TD. Previous calculations
[2,3], which yield [5] y= 1 for noninteger D, did not in-

volve the physical massless propagator [12] (valid for a

finite manifold with Neumann boundary conditions) used

here.
When D~ 2, if the small e RG picture remains valid,

i.e., if the large distance properties of SAM are governed

by the ir fixed point bR, operators involving curvature be-
come relevant, and (2) is not expected to be valid in gen-
eral; it holds at least for a curvature-free, toroidal poly-
merized two-dimensional membrane.

6 point and long-range interactions. —The above for-

(i 3)

malized, arguments parallel to those of [14] for polymers
can be used to justify the DR formalism. Indeed, the
second virial coefficient g(b, V) (as well as any dimen
sionless scaling function) must be uv finite when ex-
pressed as a function gR(bR, vp ) of the renormalized
coupling bR (and of p). As a consequence, (i) the scaling
functions are finite when expressed in terms of g and obey
RG equations. The existence of a nontrivial ir fixed point

bR for e) 0 implies that (ii) in the large volume limit
V —~, g tends toward a finite limit g* =gR(bR) (in-
dependent of Vp ), and so do all scaling functions.
Points (i) and (ii) are the essence of DR.

Hyperscaling. —As mentioned above, the renormaliza-
tion of partition functions for a finite SAM requires an

additional counterterm (shift of the free energy) propor-
tional to the manifold volume V. A consequence of the
absence of other geometry dependent relevant operators
when 0 & D & 2 is the general hyperscaling law (2) valid

for closed SAM, and relating the configuration exponent

y, defined by
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malism is directly applicable to a large class of manifold
models where the interaction can be expressed in terms of
free field exponentials with suitable neutrality constraints
P, [k;]. Examples of such interactions are the n-body
contact potentials but also the two-body long-range
Coulomb potential I/~r —r'~, which can be represent-
ed by modified dipolar constraints C [k;] =

~k~ b (k
+k'). For all these models, the MOPE involves the same
multilocal operators as in (8), with modified coefficients
[still given by (9), but with new constraints C,].

As an application, we may ask for the most relevant
short-range interaction describing a polymerized mem-

brane at the e point, i.e., when the two-body term b in

(I) vanishes. It is either the usual three-body contact po-
tential, with UCD d3 =3D/(2 —D), as for ordinary
polymers, or the two-body singular potential h, bd(r —r')
with UCD dz =2(3D —2)/(2 —D), which indeed is the
most relevant one when D & 3.

Finally, the absence of long-range potentials in the
MOPE shows that long-range interactions are not renor-
malized. For instance, when considering charged poly-
merized membranes with a two-body Coulomb potential,
the only (marginally) relevant operator at the UCD is the
local operator:(V, ):, indicating that only r is renormal-
ized. As a consequence, it is easy to show that v=2D/
(d —2) exactly in this case.
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