, with regard to the use of oil crop biomass residues [582] or palm oil mill effluent, 2000.

, Finally, new developments in biodiesel conversion technology have been reviewed, vol.584, 2001.

, Their evaluation is based on current crops but highlights the 2006 necessity to mitigate against greenhouse gas emission. Chisti [586] argued strongly that 2007 microalgae are better than crops (as used for bioethanol) in terms of their smaller impact on the 2008 environment and their efficiency in producing biodiesel, As mentioned earlier, the main problem with algal-derived biodiesel currently is its cost 2003 versus petroleum-based products

, For calculation of the theoretical maximum algal oil production (at different global sites) see, vol.589, p.2012

, Further general aspects of biodiesel production are covered by Ratledge and Cohen [36] 2014 and economic analysis by Davis et al. [590] while the future of algal biofuels has been discussed, 2015.

, All the subjects covered in section 7.2 are included in the comprehensive review by, 2016.

, Although this is focussed on a particular programme, the review encompasses the same 2017 general area as this current article

, compared to petroleum supplies, means that economic viability is not yet possible. Reducing 2021 costs remains the most important target and, until that has been done significantly, vol.9, 2019.

, Different 2030 algae accumulate various pigments of which the most important commercially are astaxanthin, 2031 beta-carotene, phycobiliproteins, phycocyanin and phycoerythrin [188]. Beta-carotene is a 2032 useful food supplement and is produced by Dunaliella salina at over 10% of its dry mass, Carotenoids have utility in the food, cosmetic and pharmaceutical industries, vol.592

, Phycobiliprotein pigments are fluorescent agents [163] while phycocyanin and 2035 other pigments from red algae are used in both the food and cosmetic industries, vol.595

, Phytosterols are used in the pharmaceutical industry and as nutraceuticals [425, p.2040

, These microalgae have been found to 2041 produce up to nearly 3% dry mass as sterols [600]. Some 40 different sterols have been reported 2042 in over 100 species of diatoms. Major sterols in Glaucocystophyta are sitosterol, campesterol 2043 and stigmasterol, dinoflagellates produce mostly 4?-methyl sterols while 24-propylidene-2044 cholesterol is mainly accumulated in Pelagophyceae, Thalassiosira genera are rich in sterols, vol.425, pp.597-599

, Microalgae produce 2-8 tonnes/hectare/year of proteins [601] and a number of algae

. Chlorella, Recently, there has been an increasing interest 2049 in many algal enzymes for the genetic manipulation of plants

, Nevertheless, there seems to be constant improvements in 2052 the conversion rates of ALA to EPA and DHA by employing newly characterised desaturases 2053 and elongases. For example, vol.9

, A ?6 elongase from the cold-water diatom Fragilariopsis cylindrus gave 38% 2056 elongation of gamma-18:3. These genes allowed an expansion of activities available for the 2057 potential commercial production of EPA and DHA, Ostreococcus RCC809 gave 15% desaturation of 22:5 and 54% desaturation of ALA 2055 respectively, vol.602

, Early work in this area included enzymes useful for the conversion of 2060 EPA into DHA [603] and front-end desaturases to produce unusual fatty acids (pinolenic and 2061 coniferonic acids) [238]. Another example would be the use of three front-end desaturases from 2062 P. salina for DHA biosynthesis which could be expressed, Any of the enzymes mentioned in sections 3, 4 and 5 could, potentially, be utilised for 2059 commercial purposes

Y. , and E.F. acknowledge the support of National Science Foundation Grant 2086 PGRP IOS-1339385 and United Soybean Board Project 1820-162-0110. J.L H. thanks the 2087 BBSRC and the NERC for grants to support research on algal lipids, p.2090, 2088.

, Figure 1. De novo fatty acid synthesis -carbon and energy sources

, Abbreviations: ACP, acyl-CoA binding protein

;. Accase, . Mcmt, and . Coa, malonyltransferase; Dof-type TF, DNA binding with one finger type 2094 transcription factor; bHLH, a basic helix-loop-helix; bZIP, a basic leucine zipper-domain 2095 containing TF; ER, enoyl-ACP reductase; KAS, keto-acyl-CoA synthase, ACP

, FatA/B, fatty acid 2097 thioesterase A/B; PDH, pyruvate dehydrogenase complex; PSR1, Pi Starvation Response 1

S. Sad and . Desaturase, , vol.1, p.2207

C. Courties, A. Vaquer, M. Troussellier, J. Lautier, M. J. Chrétiennot-dinet et al., , 2208.

. Claustre, Smallest eukaryotic organism, Nature, vol.370, p.255, 1994.

R. S. Steneck, M. H. Graham, B. J. Bourque, D. Corbett, J. M. Erlandson et al., Kelp 2210 forest ecosystems: biodiversity, stability, resilience and future, vol.29, pp.436-459, 2003.

P. J. Keeling, Diversity and evolutionary history of plastids and their hosts, American journal of 2213 botany, vol.91, issue.10, pp.1481-93, 2004.

J. D. Palmer, D. E. Soltis, and M. W. Chase, The plant tree of life: an overview and some points of view, American journal of botany, vol.91, issue.10, pp.1437-1482, 2004.

J. Brodie, C. X. Chan, O. De-clerck, J. M. Cock, S. M. Coelho et al., The algal revolution, Trends in plant science, vol.22, issue.8, pp.726-738, 2017.

M. D. Guiry, How many species of algae are there?, J Phycol, vol.48, issue.5, pp.1057-63, 2012.

D. L. Taylor, The coral-algal symbiosis, CUP, Cambridge, 1983.

L. C. Pearson, The diversity and evolution of plants, 1995.

I. A. Guschina and J. L. Harwood, Lipids and lipid metabolism in eukaryotic algae, Progress in lipid 2222 research, vol.45, pp.160-186, 2006.

L. B. Gualtieri, Algae: anatomy, biochemistry and biotechnology, 2014.

W. M. Omar, Perspectives on the use of algae as biological indicators for monitoring and protecting 2226 aquatic environments, with special reference to malaysian freshwater ecosystems, Tropical life 2227 sciences research, vol.21, pp.51-67, 2010.

P. J. Keeling, F. Burki, H. M. Wilcox, B. Allam, E. E. Allen et al., The marine 2229 microbial eukaryote transcriptome sequencing project (MMETSP): illuminating the functional diversity 2230 of eukaryotic life in the oceans through transcriptome sequencing, PLoS Biol, vol.12, issue.6, p.1001889, 2014.

C. Hitchcock, Plant lipid biochemistry: the biochemistry of fatty acids and acyl lipids with particular 2232 reference to higher plants and algae, 1971.

J. L. Harwood and A. L. Jones, Lipid metabolism in algae, Advances in Botanical 2235 Research, Academic Press1989, pp.1-53

P. Pohl, F. Zurheide, A. Heinz, T. Hoppe, and . Levring, Fatty acids and lipids of marine algae and the control of their biosynthesis by 2237 environmental factors, marine algae in pharmaceutical science, p.2238

Y. Tanaka, , 1979.

Y. Nakamura and Y. Li-beisson, Lipids in plant and algae development, 2016.

Y. Li-beisson, Y. Nakamura, and J. Harwood, Lipids: from chemical structures, biosynthesis, and 2241 analyses to industrial applications, Lipids in Plant and Algae, p.2242

, Development, pp.1-18, 2016.

V. M. Dembitsky and M. Srebnik, Natural halogenated fatty acids: their analogues and derivatives, Progress in lipid research, vol.41, issue.4, pp.315-67, 2002.

B. Kalisch, P. Dörmann, and G. Hölzl, DGDG and glycolipids in plants and algae

. Beisson, Lipids in Plant and Algae Development, pp.51-83, 2016.

W. R. Riekhof, M. E. Ruckle, T. A. Lydic, B. B. Sears, and C. Benning, The sulfolipids 2?-O-Acyl-2249 sulfoquinovosyldiacylglycerol and sulfoquinovosyldiacylglycerol are absent from a Chlamydomonas 2250 reinhardtii mutant deleted in SQD1, Plant Physiology, vol.133, issue.2, pp.864-874, 2003.

H. Abida, L. Dolch, C. Meï, V. Villanova, M. Conte et al., Membrane glycerolipid 2252 remodeling triggered by nitrogen and phosphorus starvation in Phaeodactylum tricornutum, Physiology, vol.167, issue.1, pp.118-136, 2015.

M. I. Gurr, J. L. Harwood, and K. N. Frayn, Lipid biochemistry, 2002.

V. J. Dodson, J. L. Dahmen, J. Mouget, and J. D. Leblond, Mono-and digalactosyldiacylglycerol 2256 composition of the marennine-producing diatom, Haslea ostrearia: Comparison to a selection of 2257 pennate and centric diatoms, Phycological Research, vol.61, issue.3, pp.199-207, 2013.

S. Logvinov, N. Gerasimenko, A. Esipov, and V. A. Denisenko, Examination of the structures of several 2259 glycerolipids from marine macroalgae by NMR and GC-MS, J Phycol, vol.51, issue.6, pp.1066-74, 2015.

W. Eichenberger, Betain lipids in lower plants -distribution of DGTS, DGTA and phospholipids, and 2261 the intracellular-localization and site of biosynthesis of DGTS, Plant Physiology and Biochemistry, vol.31, issue.2, pp.213-221, 1993.

M. Kato, M. Sakai, K. Adachi, H. Ikemoto, and H. Sano, Distribution of betaine lipids in marine algae, Phytochemistry, vol.42, issue.5, pp.1341-1345, 1996.

K. Kunzler and W. Eichenberger, Betaine lipids and zwitterionic phospholipids in plants and fungi, vol.46, pp.883-892, 1997.

J. P. Canavate, I. Armada, J. L. Rios, and I. Hachero-cruzado, Exploring occurrence and molecular 2268 diversity of betaine lipids across taxonomy of marine microalgae, Phytochemistry, vol.124, pp.68-78, 2016.

M. Vyssotski, K. Lagutin, A. Mackenzie, K. Mitchell, and D. Scott, Phospholipids of New Zealand edible 2270 brown algae, vol.52, pp.629-639, 2017.

M. A. Danielewicz, L. A. Anderson, and A. K. Franz, Triacylglycerol profiling of marine microalgae by mass 2272 spectrometry, Journal of Lipid Research, vol.52, issue.11, pp.2101-2108, 2011.

J. W. Allen, C. C. Dirusso, and P. N. Black, Triglyceride quantification by catalytic saturation and LC-2274

, MS/MS reveals an evolutionary divergence in regioisometry among green microalgae, Algal Research, vol.2275, issue.5, pp.23-31, 2014.

B. Liu and C. Benning, Lipid metabolism in microalgae distinguishes itself, Current Opinion in 2277, Biotechnology, vol.24, issue.2, pp.300-309, 2013.

X. Wang, Y. H. Liu, D. X. Hu, S. Balamurugan, Y. Lu et al., Identification of a 2279 putative patatin-like phospholipase domain-containing protein 3 (PNPLA3) ortholog involved in lipid 2280 metabolism in microalga Phaeodactylum tricornutum, Algal Research-Biomass Biofuels and 2281 Bioproducts, vol.12, pp.274-279, 2015.

M. Yang, Y. Fan, P. C. Wu, Y. D. Chu, P. L. Shen et al., An extended approach to quantify 2283 triacylglycerol in microalgae by characteristic fatty acids, Frontiers in plant science, vol.8, p.2284, 2017.

P. L. Shen, H. T. Wang, Y. F. Pan, Y. Y. Meng, P. C. Wu et al., Identification of characteristic fatty 2285 acids to quantify triacylglycerols in microalgae, Frontiers in plant science, vol.7, p.162, 2016.

C. Ratledge and Z. Cohen, Single Cell Oils : Microbial and algal oils, p.2287, 2010.

I. K. Lang, L. Hodac, T. Friedl, and I. Feussner, Fatty acid profiles and their distribution patterns in 2288 microalgae: a comprehensive analysis of more than 2000 strains from the SAG culture collection, BMC 2289 plant biology, vol.11, 2011.

N. N. Zulu, K. Zienkiewicz, K. Vollheyde, and I. Feussner, Current trends to comprehend lipid 2291 metabolism in diatoms, Progress in lipid research, vol.70, pp.1-16, 2018.

J. Jouhet, J. Lupette, O. Clerc, L. Magneschi, M. Bedhomme et al., , 2293.

L. Rebeille and . Ms, TLC plus GC methods: Consistency of glycerolipid and fatty acid profiles in 2294 microalgae and higher plant cells and effect of a nitrogen starvation, PLoS One, vol.12, issue.8, p.182423, 2017.

M. Kendel, G. Barnathan, J. Fleurence, V. Rabesaotra, and G. Wielgosz-collin, Non-methylene 2296 interrupted and hydroxy fatty acids in polar lipids of the alga Grateloupia turuturu over the four 2297 seasons, Lipids, vol.48, issue.5, pp.535-580, 2013.

P. Kumari, C. R. Reddy, and B. Jha, Comparative evaluation and selection of a method for lipid and fatty 2299 acid extraction from macroalgae, Analytical biochemistry, vol.415, issue.2, pp.134-178, 2011.

G. Zheng, C. Li, L. Guo, W. Ruo, and S. Wang, Purification of extracted fatty acids from the microalgae 2301 spirulina, Journal of the American Oil Chemists' Society, vol.89, issue.4, pp.561-566, 2011.

G. Wang and T. Wang, Characterization of lipid components in two microalgae for biofuel application, Journal of the American Oil Chemists' Society, vol.89, issue.1, pp.135-143, 2011.

A. Vieler, C. Wilhelm, R. Goss, R. Sub, and J. Schiller, The lipid composition of the unicellular green alga 2305

, Chlamydomonas reinhardtii and the diatom Cyclotella meneghiniana investigated by MALDI-TOF MS 2306 and TLC, Chemistry and Physics of Lipids, vol.150, issue.2, pp.143-155, 2007.

W. W. Han, Lipid analysis, p.2308, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01587044

Y. Li-beisson, B. Shorrosh, F. Beisson, M. X. Andersson, V. Arondel et al., Acyl-lipid 2309 metabolism, p.161, 2013.

W. R. Riekhof, B. B. Sears, and C. Benning, Annotation of genes involved in glycerolipid biosynthesis in 2311 Chlamydomonas reinhardtii: Discovery of the betaine lipid synthase BTA1(Cr), vol.4, pp.242-252, 2005.

E. R. Moellering, R. Miller, and C. Benning, Molecular genetics of lipid metabolism in the model green 2314 alga Chlamydomonas reinhardtii, Springer 2315 Netherlands2010, pp.139-155

I. Khozin-goldberg and Z. Cohen, Unraveling algal lipid metabolism: Recent advances in gene 2317 identification, Biochimie, vol.93, issue.1, pp.91-100, 2011.

I. Khozin-goldberg, U. Iskandarov, and Z. Cohen, LC-PUFA from photosynthetic microalgae: 2319 occurrence, biosynthesis, and prospects in biotechnology, Applied microbiology and biotechnology, vol.2320, issue.4, pp.905-915, 2011.

D. Petroutsos, S. Amiar, H. Abida, L. J. Dolch, O. Bastien et al., Evolution of 2322 galactoglycerolipid biosynthetic pathways--from cyanobacteria to primary plastids and from primary 2323 to secondary plastids, Progress in lipid research, vol.54, pp.68-85, 2014.

A. Banerjee, S. K. Maiti, C. Guria, and C. Banerjee, Metabolic pathways for lipid synthesis under nitrogen 2325 stress in Chlamydomonas and Nannochloropsis, Biotechnology Letters, vol.39, issue.1, pp.1-11, 2017.

A. Vieler, G. Wu, C. Tsai, B. Bullard, A. J. Cornish et al., Genome, functional gene 2327 annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica 2328 CCMP1779, PLoS genetics, vol.8, issue.11, p.1003064, 2012.

N. Sato, T. Moriyama, N. Mori, and M. Toyoshima, Lipid metabolism and potentials of biofuel and high 2330 added-value oil production in red algae, World J. Microbiol. Biotechnol, vol.33, issue.4, p.11, 2017.

O. Sayanova, V. Mimouni, L. Ulmann, A. Morant-manceau, V. Pasquet et al., Modulation of lipid biosynthesis by stress in diatoms, Philosophical Transactions of the Royal Society 2333 B-Biological Sciences, vol.372, p.14, 1728.
URL : https://hal.archives-ouvertes.fr/hal-02001096

S. S. Merchant, J. Kropat, B. Liu, J. Shaw, and J. Warakanont, TAG, You're it! Chlamydomonas as a 2335 reference organism for understanding algal triacylglycerol accumulation, Current Opinion in 2336, Biotechnology, vol.23, issue.3, pp.352-363, 2012.

Y. Li-beisson, F. Beisson, and W. Riekhof, Metabolism of acyl-lipids in Chlamydomonas reinhardtii, Plant Journal, vol.82, issue.3, pp.504-522, 2015.

L. Abu-elheiga, W. R. Brinkley, L. Zhong, S. S. Chirala, G. Woldegiorgis et al., The subcellular 2340 localization of acetyl-CoA carboxylase 2, Proceedings of the National Academy of Sciences of the 2341 United States of America, vol.97, pp.1444-1449, 2000.

Q. Hu, M. Sommerfeld, E. Jarvis, M. Ghirardi, M. Posewitz et al., Microalgal 2343 triacylglycerols as feedstocks for biofuel production: perspectives and advances, Plant J Cell Mole Biol, vol.2344, p.54, 2008.

J. Ohlrogge and J. Browse, Lipid biosynthesis, Plant Cell, vol.7, issue.7, pp.957-970, 1995.

Y. Sasaki, T. Konishi, and Y. Nagano, The compartmentation of acetyl-Coenzyme A carboxylase in 2347 plants, Plant Physiology, vol.108, issue.2, pp.445-449, 1995.

N. Parker, Y. Wang, and D. Meinke, Analysis of Arabidopsis accessions hypersensitive to a loss of 2349 chloroplast translation, Plant Physiol, vol.172, issue.3, pp.1862-1875, 2016.

R. Radakovits, R. E. Jinkerson, S. I. Fuerstenberg, H. Tae, R. E. Settlage et al., Draft 2351 genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana, Nat, vol.2352, p.686, 2012.

R. Huerlimann and K. Heimann, Comprehensive guide to acetyl-carboxylases in algae, Critical reviews 2354 in biotechnology, vol.33, issue.1, pp.49-65, 2013.

S. Haq, T. R. Bachvaroff, and A. R. Place, Characterization of acetyl-CoA carboxylases in the basal 2356 dinoflagellate Amphidinium carterae, Marine drugs, vol.15, issue.6, 2017.

R. E. Jinkerson, R. Radakovits, and M. C. Posewitz, Genomic insights from the oleaginous model alga 2358 Nannochloropsis gaditana, Bioengineered, vol.4, issue.1, pp.0-1, 2013.

R. A. Page, S. Okada, and J. L. Harwood, Acetyl-CoA carboxylase exerts strong flux control over lipid 2360 synthesis in plants, Biochimica et Biophysica Acta (BBA) -Lipids and Lipid Metabolism, vol.1210, issue.3, pp.2361-369, 1994.

L. A. Leyva, Y. Bashan, A. Mendoza, and L. E. De-bashan, Accumulation of fatty acids in Chlorella vulgaris 2363 under heterotrophic conditions in relation to activity of acetyl-CoAcarboxylase, temperature, and co-2364 immobilization with Azospirillum brasilense, Die Naturwissenschaften, vol.101, issue.10, 2014.

K. Roesler, D. Shintani, L. Savage, S. Boddupalli, and J. Ohlrogge, Targeting of the Arabidopsis 2366 homomeric acetyl-coenzyme A carboxylase to plastids of rapeseeds, Plant Physiol, vol.113, issue.1, 1997.

T. G. Dunahay, E. E. Jarvis, S. S. Dais, and P. G. Roessler, Manipulation of microalgal lipid production using 2368 genetic engineering, Applied biochemistry and biotechnology, vol.57, issue.8, pp.223-231, 1996.

W. H. Xie, F. Pang, Y. F. Niu, M. H. Zhang, W. D. Yang et al., Functional 2370 characterization of an ACCase subunit from the diatom Phaeodactylum tricornutum expressed in 2371 Escherichia coli, Biotechnology and applied biochemistry, vol.60, issue.3, pp.330-335, 2013.

M. S. Davis, J. Solbiati, J. E. Cronan, and J. , Overproduction of acetyl-CoA carboxylase activity increases 2373 the rate of fatty acid biosynthesis in Escherichia coli, J Biol Chem, vol.275, issue.37, pp.28593-28601, 2000.

Y. Madoka, K. I. Tomizawa, J. Mizoi, I. Nishida, Y. Nagano et al., Chloroplast transformation 2375 with modified accD operon increases acetyl-CoA carboxylase and causes extension of leaf longevity 2376 and increase in seed yield in tobacco, Plant and Cell Physiology, vol.43, issue.12, pp.1518-1525, 2002.

D. Shintani, K. Roesler, B. Shorrosh, L. Savage, and J. Ohlrogge, Antisense expression and 2378 overexpression of biotin carboxylase in tobacco leaves, Plant Physiol, vol.114, issue.3, pp.881-887, 1997.

J. J. Thelen and J. B. Ohlrogge, Both antisense and sense expression of biotin carboxyl carrier protein 2380 isoform 2 inactivates the plastid acetyl-coenzyme A carboxylase in Arabidopsis thaliana, Plant journal 2381, vol.32, issue.4, pp.419-450, 2002.

M. Chen, B. P. Mooney, M. Hajduch, T. Joshi, M. Zhou et al., , p.2383

, Arabidopsis mutant altered in de novo fatty acid synthesis reveals diverse changes in seed composition 2384 and metabolism, Plant Physiol, vol.150, issue.1, pp.27-41, 2009.

R. S. Wilson and J. J. Thelen, In vivo quantitative monitoring of subunit stoichiometry for metabolic 2386 complexes, J Proteome Res, vol.17, issue.5, pp.1773-1783, 2018.

M. J. Salie, N. Zhang, V. Lancikova, D. Xu, and J. J. Thelen, A family of negative regulators targets the 2388 committed step of de novo fatty acid biosynthesis, Plant Cell, 2016.

M. J. Salie and J. J. Thelen, Regulation and structure of the heteromeric acetyl-CoA carboxylase, p.2390

, Biochim Biophys Acta, vol.1861, issue.9, pp.1207-1213, 2016.

J. W. Chen, W. J. Liu, D. X. Hu, X. Wang, S. Balamurugan et al., Identification of a malonyl CoA-acyl carrier protein transacylase and its regulatory role in fatty acid 2393 biosynthesis in oleaginous microalga Nannochloropsis oceanica, Biotechnology and applied 2394 biochemistry, vol.64, issue.5, pp.620-626, 2017.

Y. Li-beisson, B. Shorosh, F. Beisson, M. Andersson, V. Arondel et al., the Arabidopsis Book, p.2396, 2010.

N. Sumiya, Y. Kawase, J. Hayakawa, M. Matsuda, M. Nakamura et al., Expression of 2399 cyanobacterial Acyl-ACP reductase elevates the triacylglycerol level in the red alga Cyanidioschyzon 2400 merolae, Plant & cell physiology, vol.56, issue.10, pp.1962-80, 2015.

J. Liu, Z. Sun, Y. Zhong, J. Huang, Q. Hu et al., Stearoyl-acyl carrier protein desaturase gene from 2402 the oleaginous microalga Chlorella zofingiensis: cloning, characterization and transcriptional analysis, Planta, vol.236, issue.6, pp.1665-76, 2012.

A. Alboresi, G. Perin, N. Vitulo, G. Diretto, M. Block et al., Light remodels lipid 2405 biosynthesis in Nannochloropsis gaditana by modulating carbon partitioning between organelles, vol.171, pp.2468-82, 2016.

G. Bonaventure, J. J. Salas, M. R. Pollard, and J. B. Ohlrogge, Disruption of the FATB gene in Arabidopsis 2408 demonstrates an essential role of saturated fatty acids in plant growth, The Plant Cell, vol.15, issue.4, pp.1020-1033, 2003.

A. Jones, H. M. Davies, and T. A. Voelker, Palmitoyl-acyl carrier protein (ACP) thioesterase and the 2411 evolutionary origin of plant acyl-ACP thioesterases, Plant Cell, vol.7, issue.3, pp.359-71, 1995.

J. J. Salas and J. B. Ohlrogge, Characterization of substrate specificity of plant FatA and FatB acyl-ACP 2413 thioesterases, Archives of biochemistry and biophysics, vol.403, issue.1, pp.25-34, 2002.

T. Voelker, A. Worrell, L. Anderson, J. Bleibaum, C. Fan et al., Fatty acid 2415 biosynthesis redirected to medium chains in transgenic oilseed plants, Science, vol.257, issue.5066, pp.72-2416, 1992.

H. J. Kim, J. E. Silva, H. S. Vu, K. Mockaitis, J. W. Nam et al., Toward production of jet fuel 2418 functionality in oilseeds: identification of FatB acyl-acyl carrier protein thioesterases and evaluation of 2419 combinatorial expression strategies in Camelina seeds, Journal of experimental botany, vol.66, issue.14, pp.4251-4265, 2015.

K. Dehesh, A. Jones, D. S. Knutzon, and T. A. Voelker, Production of high levels of 8:0 and 10:0 fatty acids 2422 in transgenic canola by overexpression of Ch FatB2, a thioesterase cDNA from Cuphea hookeriana, Plant Journal, vol.9, issue.2, pp.167-172, 1996.

J. A. Napier, R. P. Haslam, F. Beaudoin, and E. B. Cahoon, Understanding and manipulating plant lipid 2425 composition: Metabolic engineering leads the way, Current Opinion in Plant Biology, vol.19, issue.0, pp.68-2426, 2014.

J. Jaworski and E. B. Cahoon, Industrial oils from transgenic plants, Current Opinion in Plant Biology 2428, vol.6, issue.2, pp.178-184, 2003.

R. Radakovits, P. M. Eduafo, and M. C. Posewitz, Genetic engineering of fatty acid chain length in 2430 Phaeodactylum tricornutum, Metabolic Engineering, vol.13, issue.1, pp.89-95, 2011.

H. Lin and Y. K. Lee, Genetic engineering of medium-chain-length fatty acid synthesis in Dunaliella 2432 tertiolecta for improved biodiesel production, Journal of applied phycology, vol.29, issue.6, p.2433, 2017.

Y. Inaba, K. Nakahigashi, T. Ito, and M. Tomita, Alteration of fatty acid chain length of Chlamydomonas 2434 reinhardtii by simultaneous expression of medium-chain-specific thioesterase and acyl carrier protein, Phycological Research, vol.65, issue.1, pp.94-99, 2017.

K. W. Tan and Y. K. Lee, Expression of the heterologous Dunaliella tertiolecta fatty acyl-ACP 2437 thioesterase leads to increased lipid production in Chlamydomonas reinhardtii, Journal of 2438 biotechnology, vol.247, pp.60-67, 2017.

Y. Gong, X. Guo, X. Wan, Z. Liang, and M. Jiang, Characterization of a novel thioesterase (PtTE) from 2440 Phaeodactylum tricornutum, Journal of basic microbiology, vol.51, issue.6, pp.666-672, 2011.

X. Hao, L. Luo, J. Jouhet, F. Rébeillé, E. Maréchal et al., Enhanced triacylglycerol production 2442 in the diatom Phaeodactylum tricornutum by inactivation of a Hotdog-fold thioesterase gene using 2443 TALEN-based targeted mutagenesis, Biotechnology for Biofuels, vol.11, issue.1, p.312, 2018.

J. L. Blatti, J. Beld, C. A. Behnke, M. Mendez, S. P. Mayfield et al., Manipulating fatty acid 2445 biosynthesis in microalgae for biofuel through protein-protein interactions, Plos One, vol.7, issue.9, p.42949, 2012.

N. Li, I. L. Gugel, P. Giavalisco, V. Zeisler, L. Schreiber et al., FAX1, a novel membrane 2448 protein mediating plastid fatty acid export, PLoS Biol, vol.13, issue.2, p.1002053, 2015.

D. Jessen, C. Roth, M. Wiermer, and M. Fulda, Two activities of long-chain acyl-coenzyme A 2450 synthetase are involved in lipid trafficking between the endoplasmic reticulum and the plastid in 2451, Arabidopsis, vol.167, issue.2, pp.351-66, 2015.

N. Li, C. Xu, Y. Li-beisson, and K. Philippar, Fatty acid and lipid transport in plant cells, Trends in plant 2453 science, vol.21, pp.145-158, 2016.

A. E. Leonard, S. L. Pereira, H. Sprecher, and Y. S. Huang, Elongation of long-chain fatty acids, Progress 2455 in lipid research, vol.43, pp.36-54, 2004.

J. Shanklin and E. B. Cahoon, Desaturation and related modifications of fatty acids, Annual review of 2457 plant physiology and plant molecular biology, vol.49, pp.611-641, 1998.

D. A. Los and N. Murata, Structure and expression of fatty acid desaturases, Biochimica et Biophysica, p.2459

, Acta (BBA) -Lipids and Lipid Metabolism, vol.1394, issue.1, pp.3-15, 1998.

H. M. Nguyen, S. Cuiné, A. Beyly-adriano, B. Légeret, E. Billon et al., , p.2461

. Li-beisson, The green microalga Chlamydomonas reinhardtii has a single ?-3 fatty acid desaturase that 2462 localizes to the chloroplast and impacts both plastidic and extraplastidic membrane lipids, Physiology, vol.163, issue.2, pp.914-928, 2013.

C. Bigogno, I. Khozin-goldberg, D. Adlerstein, and Z. Cohen, Biosynthesis of arachidonic acid in the 2465 oleaginous microalga Parietochloris incisa (Chlorophyceae): radiolabeling studies, vol.37, pp.2466-209, 2002.

B. Qi, F. Beaudoin, T. Fraser, A. K. Stobart, J. A. Napier et al., Identification of a cDNA 2468 encoding a novel C18-Delta(9) polyunsaturated fatty acid-specific elongating activity from the 2469 docosahexaenoic acid (DHA)-producing microalga, Isochrysis galbana, FEBS Lett, vol.510, issue.3, 2002.

J. R. Petrie, P. Shrestha, M. P. Mansour, P. D. Nichols, Q. Liu et al., Metabolic engineering of 2471 omega-3 long-chain polyunsaturated fatty acids in plants using an acyl-CoA ?6-desaturase with ?3-2472 preference from the marine microalga Micromonas pusilla, Metabolic Engineering, vol.12, issue.3, p.240, 2010.

O. Sayanova, R. P. Haslam, M. V. Caleron, N. R. Lopez, C. Worthy et al., Identification and functional characterisation of genes encoding the omega-3 polyunsaturated fatty 2476 acid biosynthetic pathway from the coccolithophore Emiliania huxleyi, Phytochemistry, vol.72, issue.7, pp.2477-594, 2011.

J. G. Wallis and J. Browse, The Delta8-desaturase of Euglena gracilis: an alternate pathway for 2479 synthesis of 20-carbon polyunsaturated fatty acids, Archives of biochemistry and biophysics, vol.365, issue.2, pp.307-323, 1999.

I. Khozin-goldberg, S. Didi-cohen, I. Shayakhmetova, and Z. Cohen, Biosynthesis of eicosapentaenoic 2482 acid (EPA) in the freshwater eustigmatophyte Monodus subterraneus (Eustigmatophyceae), Journal of 2483 Phycology, vol.38, issue.4, pp.745-756, 2002.

I. Khozin, D. Adlerstein, C. Bigongo, Y. M. Heimer, and Z. Cohen, Elucidation of the biosynthesis of 2485 eicosapentaenoic acid in the microalga Porphyridium cruentum (II. Studies with Radiolabeled 2486 Precursors), Plant Physiol, vol.114, issue.1, pp.223-230, 1997.

J. G. Metz, P. Roessler, D. Facciotti, C. Levering, F. Dittrich et al., Production of 2488 polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes, Science, vol.2489, issue.5528, pp.290-293, 2001.

J. L. Harwood and I. A. Guschina, The versatility of algae and their lipid metabolism, Biochimie, vol.91, issue.6, pp.679-684, 2009.

O. Avidan, A. Brandis, I. Rogachev, and U. Pick, Enhanced acetyl-CoA production is associated with 2493 increased triglyceride accumulation in the green alga Chlorella desiccata, Journal of experimental 2494 botany, vol.66, issue.13, pp.3725-3735, 2015.

J. Fan, C. Yan, C. Andre, J. Shanklin, J. Schwender et al., Oil accumulation is controlled by carbon 2496 precursor supply for fatty acid synthesis in Chlamydomonas reinhardtii, Plant and Cell Physiology, vol.53, issue.8, pp.1380-1390, 2012.

U. Goodenough, I. Blaby, D. Casero, S. D. Gallaher, C. Goodson et al., The path to 2499 triacylglyceride obesity in the sta6 strain of Chlamydomonas reinhardtii, Eukaryotic cell, vol.13, issue.5, pp.2500-591, 2014.

R. Ramanan, B. H. Kim, D. H. Cho, S. R. Ko, H. M. Oh et al., Lipid droplet synthesis is limited by 2502 acetate availability in starchless mutant of Chlamydomonas reinhardtii, FEBS Lett, vol.587, issue.4, pp.370-377, 2013.

F. Bourgis, A. Kilaru, X. Cao, G. F. Ngando-ebongue, N. Drira et al., Comparative 2504 transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in 2505 carbon partitioning, Proceedings of the National Academy of Sciences of the United States of America 2506, vol.108, pp.12527-12532, 2011.

J. L. Harwood, Recent advances in the biosynthesis of plant fatty acids, Biochim Biophys Acta, vol.2508, pp.7-56, 1996.

R. Leonardi, Y. M. Zhang, C. O. Rock, and S. Jackowski, Coenzyme A: back in action, Progress in lipid 2510 research, vol.44, pp.125-53, 2005.

Y. Ma, X. Wang, Y. Niu, Z. Yang, M. Zhang et al., , p.2512

, Antisense knockdown of pyruvate dehydrogenase kinase promotes the neutral lipid accumulation in 2513 the diatom Phaeodactylum tricornutum, Microbial Cell Factories, vol.13, issue.1, p.100, 2014.

R. Scheibe, Malate valves to balance cellular energy supply, Physiol Plant, vol.120, issue.1, 2004.

A. P. Weber, Solute transporters as connecting elements between cytosol and plastid stroma, p.2516

, Curr Opin Plant Biol, vol.7, issue.3, pp.247-53, 2004.

P. G. Roughan, R. Holland, and C. R. Slack, Acetate is the preferred substrate for long-chain fatty acid 2518 synthesis in isolated spinach chloroplasts, Biochemical Journal, vol.184, issue.3, pp.565-569, 1979.

M. Conte, J. Lupette, K. Seddiki, C. Mei, L. J. Dolch et al., , 2520.

. Marechal, Screening for biologically annotated drugs that trigger triacylglycerol accumulation in the 2521 diatom Phaeodactylum, Plant Physiol, 2018.

B. P. Mooney, J. A. Miernyk, and D. D. Randall, Cloning and characterization of the dihydrolipoamide S-2523 acetyltransferase subunit of the plastid pyruvate dehydrogenase complex (E2) from arabidopsis, Physiology, vol.120, issue.2, pp.443-451, 1999.

M. L. Johnston, M. H. Luethy, J. A. Miernyk, and D. D. Randall, Cloning and molecular analyses of the 2526

, Arabidopsis thaliana plastid pyruvate dehydrogenase subunits, Biochim Biophys Acta, vol.1321, issue.3, pp.2527-200, 1997.

R. Miller, G. X. Wu, R. R. Deshpande, A. Vieler, K. Gartner et al., Changes in transcript 2529 abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of 2530 metabolism, Plant Physiology, vol.154, issue.4, pp.1737-1752, 2010.

N. Shtaida, I. Khozin-goldberg, A. Solovchenko, K. Chekanov, S. Didi-cohen et al., 2532 Downregulation of a putative plastid PDC E1? subunit impairs photosynthetic activity and 2533 triacylglycerol accumulation in nitrogen-starved photoautotrophic Chlamydomonas reinhardtii, Journal of experimental botany, 2014.

D. J. Oliver, B. J. Nikolau, and E. S. Wurtele, Acetyl-CoA-Life at the metabolic nexus, Plant Science 2536, vol.176, issue.5, pp.597-601, 2009.

S. Jose and G. K. Suraishkumar, High carbon (CO2) supply leads to elevated intracellular acetyl CoA 2538 levels and increased lipid accumulation in Chlorella vulgaris, Algal Research-Biomass Biofuels, vol.19, pp.307-315, 2016.

H. Peng, D. Wei, F. Chen, and G. Chen, Regulation of carbon metabolic fluxes in response to CO2 2541 supplementation in phototrophic Chlorella vulgaris: a cytomic and biochemical study, Journal of 2542 applied phycology, vol.28, issue.2, pp.737-745, 2016.

X. W. Wang, J. R. Liang, C. S. Luo, C. P. Chen, and Y. H. Gao, Biomass, total lipid production, and fatty 2544 acid composition of the marine diatom Chaetoceros muelleri in response to different CO2 levels, p.2545

, Bioresour Technol, vol.161, pp.124-154, 2014.

S. Wu, A. Huang, B. Zhang, L. Huan, P. Zhao et al., Enzyme activity highlights the 2547 importance of the oxidative pentose phosphate pathway in lipid accumulation and growth of 2548 Phaeodactylum tricornutum under CO2 concentration, Biotechnol Biofuels, vol.8, p.78, 2015.

M. T. Juergens, B. Disbrow, and Y. Shachar-hill, The relationship of triacylglycerol and starch 2550 accumulation to carbon and energy flows during nutrient deprivation in Chlamydomonas reinhardtii, Plant Physiol, vol.171, issue.4, pp.2445-57, 2016.

C. Ingram-smith, S. R. Martin, and K. S. Smith, Acetate kinase: not just a bacterial enzyme, Trends in 2553 microbiology, vol.14, issue.6, pp.249-53, 2006.

J. Schwender, J. B. Ohlrogge, and Y. Shachar-hill, A flux model of glycolysis and the oxidative 2555 pentosephosphate pathway in developing Brassica napus embryos, Journal of Biological Chemistry, vol.2556, issue.32, pp.29442-29453, 2003.

C. Goodson, R. Roth, Z. T. Wang, and U. Goodenough, Structural correlates of cytoplasmic and 2558 chloroplast lipid body synthesis in Chlamydomonas reinhardtii and stimulation of lipid body production 2559 with acetate boost, Eukaryotic cell, vol.10, issue.12, pp.1592-1606, 2011.

A. Mühlroth, K. Li, G. Røkke, P. Winge, Y. Olsen et al., Pathways of lipid 2561 metabolism in marine algae, co-expression network, bottlenecks and candidate genes for enhanced 2562 production of EPA and DHA in species of Chromista, Marine drugs, vol.11, issue.11, pp.4662-4697, 2013.

J. Yan, R. Cheng, X. Lin, S. You, K. Li et al., Overexpression of acetyl-CoA synthetase 2564 increased the biomass and fatty acid proportion in microalga Schizochytrium, Applied microbiology 2565 and biotechnology, vol.97, issue.5, pp.1933-1942, 2013.

P. A. Botham and C. Ratledge, A biochemical explanation for lipid accumulation in Candida 107 and 2567 other oleaginous micro-organisms, Journal of general microbiology, vol.114, issue.2, pp.361-75, 1979.

C. Ratledge, Regulation of lipid accumulation in oleaginous micro-organisms, Biochemical Society 2569 transactions, vol.30, pp.1047-1050, 2002.

C. Ratledge and J. P. Wynn, The biochemistry and molecular biology of lipid accumulation in 2571 oleaginous microorganisms, Advances in Applied 2572 Microbiology, vol.512002, pp.1-51

B. L. Fatland, B. J. Nikolau, and E. S. Wurtele, Reverse genetic characterization of cytosolic acetyl-CoA 2574 generation by ATP-citrate lyase in Arabidopsis, The Plant Cell, vol.17, issue.1, p.182, 2005.

M. Tardif, A. Atteia, M. Specht, G. Cogne, N. Rolland et al., PredAlgo, a new 2576 subcellular localization prediction tool dedicated to green algae, Molecular biology and evolution, p.2577, 2012.

K. Sakurai, T. Moriyama, and N. Sato, Detailed identification of fatty acid isomers sheds light on the 2579 probable precursors of triacylglycerol accumulation in photoautotrophically grown Chlamydomonas 2580 reinhardtii, Eukaryotic cell, vol.13, issue.2, pp.256-266, 2014.

Y. Zhang, I. P. Adams, and C. Ratledge, Malic enzyme: the controlling activity for lipid production? 2582 Overexpression of malic enzyme in Mucor circinelloides leads to a 2.5-fold increase in lipid 2583 accumulation, Microbiology-Sgm, vol.153, pp.2013-2025, 2007.

J. Xue, L. Wang, L. Zhang, S. Balamurugan, D. Li et al., The pivotal role of malic 2585 enzyme in enhancing oil accumulation in green microalga Chlorella pyrenoidosa, Microbial Cell 2586 Factories, vol.15, issue.1, p.120, 2016.

J. Valenzuela, A. Mazurie, R. P. Carlson, R. Gerlach, K. E. Cooksey et al., Potential role of 2588 multiple carbon fixation pathways during lipid accumulation in Phaeodactylum tricornutum, p.2589

, Biotechnol Biofuels, vol.5, 2012.

Z. Yang, Y. Niu, Y. Ma, J. Xue, M. Zhang et al., Molecular and cellular 2591 mechanisms of neutral lipid accumulation in diatom following nitrogen deprivation, Biotechnology for 2592 Biofuels, vol.6, issue.1, p.67, 2013.

Z. Mou, Y. He, Y. Dai, X. Liu, and J. Li, Deficiency in fatty acid synthase leads to premature cell death 2594 and dramatic alterations in plant morphology, Plant Cell, vol.12, issue.3, pp.405-423, 2000.

Y. Zhao, L. Luo, J. Xu, P. Xin, H. Guo et al., , p.2596

, Malate transported from chloroplast to mitochondrion triggers production of ROS and PCD in 2597 Arabidopsis thaliana, Cell research, vol.28, issue.4, pp.448-461, 2018.

S. A. Ruuska, J. Schwender, and J. B. Ohlrogge, The capacity of green oilseeds to utilize photosynthesis 2599 to drive biosynthetic processes, Plant Physiol, vol.136, issue.1, pp.2700-2709, 2004.

H. D. Goold, S. Cuine, B. Legeret, Y. Liang, S. Brugiere et al., Saturating light induces 2601 sustained accumulation of oil in plastidal lipid droplets in Chlamydomonas reinhardtii, Plant Physiol, vol.2602, issue.4, pp.2406-2423, 2016.

Q. N. He, H. J. Yang, L. Wu, and C. X. Hu, Effect of light intensity on physiological changes, carbon 2604 allocation and neutral lipid accumulation in oleaginous microalgae, Bioresource Technology, vol.191, pp.2605-219, 2015.

W. C. Plaxton, The organization and regulation of plant glycolysis, Annual review of plant 2607 physiology and plant molecular biology, vol.47, pp.185-214, 1996.

S. G. Ball, Regulation of starch biosynthesis

. Merchant, The Molecular Biology of Chloroplasts and Mitochondria in Chlamydomonas, pp.549-567, 1998.

J. Xue, Y. Niu, T. Huang, W. Yang, J. Liu et al., Genetic improvement of the microalga 2612 Phaeodactylum tricornutum for boosting neutral lipid accumulation, Metabolic Engineering, vol.27, pp.2613-2614, 2015.

L. Recht, A. Zarka, and S. Boussiba, Patterns of carbohydrate and fatty acid changes under nitrogen 2615 starvation in the microalgae Haematococcus pluvialis and Nannochloropsis sp, Applied microbiology 2616 and biotechnology, vol.94, issue.6, pp.1495-503, 2012.

L. J. Ren, H. Huang, A. H. Xiao, M. Lian, L. J. Jin et al., Enhanced docosahexaenoic acid production 2618 by reinforcing acetyl-CoA and NADPH supply in Schizochytrium sp. HX-308, Bioprocess and biosystems 2619 engineering, vol.32, pp.837-880, 2009.

O. Perez-garcia, F. M. Escalante, L. E. De-bashan, and Y. Bashan, Heterotrophic cultures of 2621 microalgae: Metabolism and potential products, Water Research, vol.45, issue.1, pp.11-36, 2011.

J. Xue, S. Balamurugan, D. W. Li, Y. H. Liu, H. Zeng et al., Glucose-6-2623 phosphate dehydrogenase as a target for highly efficient fatty acid biosynthesis in microalgae by 2624 enhancing NADPH supply, Metab Eng, vol.41, pp.212-221, 2017.

K. Osada, Y. Maeda, T. Yoshino, D. Nojima, C. Bowler et al., Enhanced NADPH production in 2626 the pentose phosphate pathway accelerates lipid accumulation in the oleaginous diatom Fistulifera 2627 solaris, Algal Research-Biomass Biofuels and Bioproducts, vol.23, pp.126-134, 2017.

K. W. Tan and Y. K. Lee, The dilemma for lipid productivity in green microalgae: importance of 2629 substrate provision in improving oil yield without sacrificing growth, Biotechnology for Biofuels, vol.9, p.255, 2016.

Y. M. Zhang, H. Chen, C. L. He, and Q. Wang, Nitrogen starvation induced oxidative stress in an oil-2632 producing green alga Chlorella sorokiniana C3, Plos One, vol.8, issue.7, p.12, 2013.

H. Chen, J. Hu, Y. Qiao, W. Chen, J. Rong et al., Ca2+-regulated cyclic electron 2634 flow supplies ATP for nitrogen starvation-induced lipid biosynthesis in green alga, Scientific reports, vol.5, p.15117, 2015.

P. J. Eastmond, H. M. Astley, K. Parsley, S. Aubry, B. P. Williams et al.,

A. R. Nunes-nesi, J. M. Fernie, and . Hibberd, Arabidopsis uses two gluconeogenic gateways for organic acids 2638 to fuel seedling establishment, Nat Commun, vol.6, p.6659, 2015.

I. A. Graham, Seed storage oil mobilization, Annual Review of Plant Biology, vol.59, pp.115-142, 2008.

F. Kong, I. T. Romero, J. Warakanont, and Y. Li-beisson, Lipid catabolism in microalgae, The New 2641 phytologist, vol.218, pp.1340-1348, 2018.

C. Lemaire, F. A. Wollman, and P. Bennoun, Restoration of phototrophic growth in a mutant of 2643

, Chlamydomonas reinhardtii in which the chloroplast atpB gene of the ATP synthase has a deletion: an 2644 example of mitochondria-dependent photosynthesis, Proc Natl Acad Sci U S A, vol.85, issue.5, 1988.

R. Lecler, H. Vigeolas, B. Emonds-alt, P. Cardol, and C. Remacle, , p.2646

, II NADH dehydrogenase from Chlamydomonas reinhardtii mitochondria, vol.58, pp.205-2647, 2012.

R. Lecler, D. Godaux, H. Vigeolas, S. Hiligsmann, P. Thonart et al., Functional analysis of hydrogen photoproduction in respiratory-deficient mutants of Chlamydomonas 2650 reinhardtii, International Journal of Hydrogen Energy, vol.36, issue.16, pp.9562-9570, 2011.

S. Massoz, V. Larosa, B. Horrion, R. F. Matagne, C. Remacle et al., Isolation of Chlamydomonas 2652 reinhardtii mutants with altered mitochondrial respiration by chlorophyll fluorescence measurement, Journal of biotechnology, vol.215, pp.27-34, 2015.

T. Salinas, V. Larosa, P. Cardol, L. Marechal-drouard, and C. Remacle, Respiratory-deficient mutants 2655 of the unicellular green alga Chlamydomonas: A review, Biochimie, vol.100, pp.207-218, 2014.

K. K. Niyogi, Safety valves for photosynthesis, Curr Opin Plant Biol, vol.3, issue.6, pp.455-60, 2000.

K. Dietz, I. Turkan, and A. Krieger-liszkay, Redox-and reactive oxygen species-dependent signaling 2658 into and out of the photosynthesizing chloroplast, Plant Physiology, vol.171, issue.3, 2016.

M. T. Juergens, R. R. Deshpande, B. F. Lucker, J. Park, H. Wang et al., The regulation of 2660 photosynthetic structure and function during nitrogen deprivation in Chlamydomonas reinhardtii, Plant Physiol, vol.167, 2015.

M. Terashima, Chlamydomonas: triacylglycerol accumulation, p.2663

, Chlamydomonas: Biotechnology and Biomedicine, pp.2664-193, 2017.

X. Li, E. R. Moellering, B. Liu, C. Johnny, M. Fedewa et al., A galactoglycerolipid lipase 2666 is required for triacylglycerol accumulation and survival following nitrogen deprivation in 2667 Chlamydomonas reinhardtii, The Plant Cell, vol.24, issue.11, pp.4670-4686, 2012.

G. Curien, S. Flori, V. Villanova, L. Magneschi, C. Giustini et al., Nutrient scavenging and energy 2671 management: acclimation responses in nitrogen and sulfur deprived Chlamydomonas, Plant and Cell Physiology, vol.57, issue.7, pp.114-122, 2016.

X. Li, R. Zhang, W. Patena, S. S. Gang, S. R. Blum et al., An indexed, mapped mutant 2674 library enables reverse genetics studies of biological processes in Chlamydomonas reinhardtii, The 2675 Plant Cell, vol.28, issue.2, pp.367-387, 2016.

K. Dang, J. Plet, D. Tolleter, M. Jokel, S. Cuiné et al., Combined increases in 2677 mitochondrial cooperation and oxygen photoreduction compensate for deficiency in cyclic electron 2678 flow in Chlamydomonas reinhardtii, The Plant Cell, vol.26, issue.7, pp.3036-3050, 2014.

B. Bailleul, N. Berne, O. Murik, D. Petroutsos, J. Prihoda et al., Energetic coupling 2680 between plastids and mitochondria drives CO2 assimilation in diatoms, Nature, vol.524, issue.7565, pp.366-2681, 2015.

P. Cardol, G. Gloire, M. Havaux, C. Remacle, R. Matagne et al., Photosynthesis and state 2683 transitions in mitochondrial mutants of Chlamydomonas reinhardtii affected in respiration, Physiology, vol.133, issue.4, pp.2010-2020, 2003.

L. T. Zhang and J. G. Liu, Enhanced fatty acid accumulation in Isochrysis galbana by inhibition of the 2686 mitochondrial alternative oxidase pathway under nitrogen deprivation, Bioresource Technology, vol.211, pp.783-786, 2016.

B. V. Bailey and J. Moseley, Manipulation of an alternative respiratory pathway in photo-2689 autotrophs, US Patent, 2011.

S. Schmollinger, T. Muhlhaus, N. R. Boyle, I. K. Blaby, D. Casero et al., Nitrogen-sparing 2691 mechanisms in Chlamydomonas affect the transcriptome, the proteome, and photosynthetic 2692 metabolism, Plant Cell, vol.26, issue.4, pp.1410-1435, 2014.

J. Hu, A. Baker, B. Bartel, N. Linka, R. T. Mullen et al., Plant peroxisomes: 2694 biogenesis and function, The Plant Cell, vol.24, issue.6, pp.2279-2303, 2012.

Y. Hayashi and A. Shinozaki, Visualization of microbodies in Chlamydomonas reinhardtii, Journal of 2696 Plant Research, vol.125, issue.4, pp.579-586, 2012.

F. Kong, A. Burlacot, Y. Liang, B. Legeret, S. Alseekh et al., Interorganelle 2698 communication: peroxisomal MALATE DEHYDROGENASE2 connects lipid catabolism to photosynthesis 2699 through redox coupling in Chlamydomonas, Plant Cell, vol.30, issue.8, pp.1824-1847, 2018.

S. Ball, L. Dirick, A. Decq, J. Martiat, and R. Matagne, Physiology of starch storage in the monocellular 2701 alga Chlamydomonas reinhardtii, Plant Sci, vol.66, issue.1, pp.1-9, 1990.

J. Juppner, U. Mubeen, A. Leisse, C. Caldana, H. Brust et al., Dynamics of lipids and 2703 metabolites during the cell cycle of Chlamydomonas reinhardtii, The Plant journal, vol.92, issue.2, pp.331-2704, 2017.

F. Kong, Y. Liang, B. Legeret, A. Beyly-adriano, S. Blangy et al., Chlamydomonas 2706 carries out fatty acid beta-oxidation in ancestral peroxisomes using a bona fide acyl-CoA oxidase, The 2707 Plant journal, vol.90, issue.2, pp.358-371, 2017.

C. Zabawinski, N. Van-den-koornhuyse, C. Hulst, R. Schlichting, C. Giersch et al., , p.2709

, Starchless mutants of Chlamydomonas reinhardtii lack the small subunit of a heterotetrameric ADP-2710 glucose pyrophosphorylase, Journal of bacteriology, vol.183, issue.3, pp.1069-1077, 2001.

Y. Li, D. Han, G. Hu, M. Sommerfeld, and Q. Hu, Inhibition of starch synthesis results in overproduction 2712 of lipids in Chlamydomonas reinhardtii, Biotechnology and Bioengineering, vol.9999, issue.9999, p.2713, 2010.

Y. Li, D. Han, G. Hu, D. Dauvillee, M. Sommerfeld et al., Chlamydomonas starchless 2714 mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol, Metabolic 2715 Engineering, vol.12, issue.4, pp.387-391, 2010.

A. Krishnan, G. K. Kumaraswamy, D. J. Vinyard, H. Y. Gu, G. Ananyev et al., Metabolic and photosynthetic consequences of blocking starch biosynthesis in the green alga 2718 Chlamydomonas reinhardtii sta6 mutant, Plant Journal, vol.81, issue.6, pp.947-960, 2015.

M. Siaut, S. Cuine, C. Cagnon, B. Fessler, M. Nguyen et al., , 2720.

Y. Triantaphylides, G. Li-beisson, and . Peltier, Oil accumulation in the model green alga Chlamydomonas 2721 reinhardtii: characterization, variability between common laboratory strains and relationship with 2722 starch reserves, BMC Biotechnology, vol.11, issue.1, p.7, 2011.

S. Vonlanthen, D. Dauvillee, and S. Purton, Evaluation of novel starch-deficient mutants of Chlorella 2724 sorokiniana for hyper-accumulation of lipids, Algal Res, vol.12, pp.109-118, 2015.

F. Sparla, A. Costa, F. Lo, P. Schiavo, P. Pupillo et al., Redox regulation of a novel plastid-targeted 2726 beta-amylase of Arabidopsis, Plant Physiol, vol.141, issue.3, pp.840-50, 2006.

M. Baslam, E. Baroja-fernandez, A. Ricarte-bermejo, A. M. Sanchez-lopez, I. Aranjuelo et al., Genetic and isotope ratio mass spectrometric evidence for the occurrence of starch degradation 2729 and cycling in illuminated Arabidopsis leaves, PLoS One, vol.12, issue.2, p.171245, 2017.

D. M. Daloso, D. B. Medeiros, L. Anjos, T. Yoshida, W. L. Araujo et al., Metabolism within 2731 the specialized guard cells of plants, The New phytologist, vol.216, issue.4, pp.1018-1033, 2017.

I. K. Blaby, A. G. Glaesener, T. Mettler, S. T. Fitz-gibbon, S. D. Gallaher et al., Systems-level 2733 analysis of nitrogen starvation-induced modifications of carbon metabolism in a Chlamydomonas 2734 reinhardtii starchless mutant, Plant Cell, vol.25, issue.11, pp.4305-4323, 2013.

M. A. Caballero, D. Jallet, L. B. Shi, C. Rithner, Y. Zhang et al., Quantification of chrysolaminarin 2736 from the model diatom Phaeodactylum tricornutum, Algal Research-Biomass Biofuels and Bioproducts, vol.2737, issue.20, pp.180-188, 2016.

M. Hildebrand, K. Manandhar-shrestha, and R. Abbriano, Effects of chrysolaminarin synthase 2739 knockdown in the diatom Thalassiosira pseudonana: Implications of reduced carbohydrate storage 2740 relative to green algae, Algal Research, vol.23, pp.66-77, 2017.

P. G. Roessler, Changes in the activities of various lipid and carbohydrate biosynthetic enzymes 2742 in the diatom Cyclotella cryptica in response to silicon deficiency, Archives of biochemistry and 2743 biophysics, vol.267, pp.521-529, 1988.

V. Schreiber, J. Dersch, K. Puzik, O. Backer, X. Liu et al., The central vacuole of the diatom 2745 Phaeodactylum tricornutum: identification of new vacuolar membrane proteins and of a functional di-2746 leucine-based targeting motif, Protist, vol.168, issue.3, pp.271-282, 2017.

W. C. Huang and F. Daboussi, Genetic and metabolic engineering in diatoms, Philosophical 2748 Transactions of the Royal Society B-Biological Sciences, vol.372, 1728.
URL : https://hal.archives-ouvertes.fr/hal-01608348

F. Daboussi, S. Leduc, A. Maréchal, G. Dubois, V. Guyot et al., Genome 2750 engineering empowers the diatom Phaeodactylum tricornutum for biotechnology, Communications, vol.5, p.3831, 2014.

J. Keereetaweep, H. Liu, Z. Zhai, and J. Shanklin, Biotin attachment domain-containing proteins 2753 irreversibly inhibit acetyl CoA carboxylase, Plant Physiol, vol.177, issue.1, pp.208-215, 2018.

G. Schönknecht, W. Chen, C. M. Ternes, G. G. Barbier, R. P. Shrestha et al., Gene 2755 transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote, Science, vol.2756, issue.6124, pp.1207-1210, 2013.

A. J. Ninfa and P. Jiang, PII signal transduction proteins: sensors of ?-ketoglutarate that regulate 2758 nitrogen metabolism, Current Opinion in Microbiology, vol.8, issue.2, pp.168-173, 2005.

A. B. Bourrellier, B. Valot, A. Guillot, F. Ambard-bretteville, J. Vidal et al., Chloroplast 2760 acetyl-CoA carboxylase activity is 2-oxoglutarate-regulated by interaction of PII with the biotin carboxyl 2761 carrier subunit, Proc Natl Acad Sci U S A, vol.107, issue.1, pp.502-509, 2010.

N. R. Boyle, M. D. Page, B. Liu, I. K. Blaby, D. Casero et al., Three acyltransferases and 2763 nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol 2764 accumulation in Chlamydomonas, Journal of Biological Chemistry, vol.287, issue.19, 2012.

M. Gargouri, J. Park, F. O. Holguin, M. Kim, H. Wang et al., Identification of 2766 regulatory network hubs that control lipid metabolism in Chlamydomonas reinhardtii, Journal of 2767 experimental botany, vol.66, 2015.

M. M. Yohn, C. Behnke, C. Brand, and A. , Stress-induced lipid trigger, 2011.

J. L. Moseley, C. W. Chang, and A. R. Grossman, Genome-based approaches to understanding 2770 phosphorus deprivation responses and PSR1 control in Chlamydomonas reinhardtii, Eukaryotic cell, vol.5, issue.1, pp.26-44, 2006.

C. Y. Ngan, C. H. Wong, C. Choi, Y. Yoshinaga, K. Louie et al., Lineage-specific chromatin 2773 signatures reveal a regulator of lipid metabolism in microalgae, Nature Plants, vol.1, issue.8, p.1, 2015.

A. K. Bajhaiya, A. P. Dean, L. A. Zeef, R. E. Webster, and J. K. Pittman, PSR1 is a global transcriptional 2776 regulator of phosphorus deficiency responses and carbon storage metabolism in Chlamydomonas 2777 reinhardtii, Plant Physiology, vol.170, issue.3, p.1216, 2016.

N. K. Kang, S. Jeon, S. Kwon, H. G. Koh, S. E. Shin et al., Effects of overexpression of a bHLH 2779 transcription factor on biomass and lipid production in Nannochloropsis salina, Biotechnol Biofuels, vol.8, p.200, 2015.

S. Kwon, N. K. Kang, H. G. Koh, S. E. Shin, B. Lee et al., Enhancement of biomass and 2782 lipid productivity by overexpression of a bZIP transcription factor in Nannochloropsis salina, Biotechnol 2783 Bioeng, vol.115, issue.2, pp.331-340, 2018.

A. Ibanez-salazar, S. Rosales-mendoza, A. Rocha-uribe, J. I. Ramirez-alonso, and I. Lara-hernandez,

. Hernandez-torres, Over-expression of Dof-type transcription factor increases lipid production in 2786 Chlamydomonas reinhardtii, Journal of biotechnology, vol.184, pp.27-38, 2014.

N. K. Kang, E. K. Kim, Y. U. Kim, B. Lee, W. Jeong et al., Increased lipid production by 2788 heterologous expression of AtWRI1 transcription factor in Nannochloropsis salina, Biotechnology for 2789 Biofuels, vol.10, issue.1, p.231, 2017.

M. Schulz-raffelt, V. Chochois, P. Auroy, S. Cuiné, E. Billon et al., Hyper-2791 accumulation of starch and oil in a Chlamydomonas mutant affected in a plant-specific DYRK kinase, Biotechnology for Biofuels, vol.9, p.55, 2016.

M. Kajikawa, Y. Sawaragi, H. Shinkawa, T. Yamano, A. Ando et al., Algal dual-specificity 2794 tyrosine phosphorylation-regulated kinase, triacylglycerol accumulation regulator1, regulates 2795 accumulation of triacylglycerol in nitrogen or sulfur deficiency, Plant Physiology, vol.168, issue.2, pp.752-764, 2015.

I. Ajjawi, J. Verruto, M. Aqui, L. B. Soriaga, J. Coppersmith et al., Lipid production in 2797 Nannochloropsis gaditana is doubled by decreasing expression of a single transcriptional regulator, p.2798

, Nat Biotechnol, vol.35, issue.7, pp.647-652, 2017.

S. Imamura, Y. Kawase, I. Kobayashi, T. Sone, A. Era et al., Target of rapamycin 2800 (TOR) plays a critical role in triacylglycerol accumulation in microalgae, Plant Mol Biol, vol.89, issue.3, pp.309-2801, 2015.

L. J. Dolch, J. Lupette, G. Tourcier, M. Bedhomme, S. Collin et al., Nitric oxide 2803 mediates nitrite-sensing and acclimation and triggers a remodeling of lipids, Plant Physiol, vol.175, issue.3, pp.2804-1407, 2017.

L. Prioretti, L. Avilan, F. Carrière, M. Montané, B. Field et al., The inhibition of TOR 2806 in the model diatom Phaeodactylum tricornutum promotes a get-fat growth regime, Algal Research, vol.26, pp.265-274, 2017.

Z. T. Wang, N. Ullrich, S. Joo, S. Waffenschmidt, and U. Goodenough, Algal lipid bodies: stress 2809 induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas 2810 reinhardtii, Eukaryotic cell, vol.8, issue.12, pp.1856-68, 2009.

M. E. Perez-perez and J. L. Crespo, Autophagy in the model alga Chlamydomonas reinhardtii, vol.6, pp.562-563, 2010.

I. Couso, M. E. Perez-perez, E. Martinez-force, H. S. Kim, Y. He et al., Autophagic flux 2814 is required for the synthesis of triacylglycerols and ribosomal protein turnover in Chlamydomonas, European 2818 Journal of Biochemistry, vol.69, issue.6, pp.987-993, 1995.

J. Leblond, H. Ilea-timofte, S. A. Roche, and N. M. Porter, Mono-and digalactosyldiacylglycerol 2820 composition of glaucocystophytes (Glaucophyta): A modern interpretation using positive-ion 2821 electrospray ionization/mass spectrometry/mass spectrometry, 2010.

M. Kajikawa, K. T. Yamato, Y. Kohzu, S. Shoji, K. Matsui et al., A front-end desaturase 2823 from Chlamydomonas reinhardtii produces pinolenic and coniferonic acids by omega 13 desaturation 2824 in methylotrophic yeast and tobacco, Plant and Cell Physiology, vol.47, issue.1, pp.64-73, 2006.

S. Zauner, W. Jochum, T. Bigorowski, and C. Benning, A cytochrome b(5)-containing plastid-located 2826 fatty acid desaturase from Chlamydomonas reinhardtii, Eukaryotic cell, vol.11, issue.7, pp.856-863, 2012.

G. A. Thompson, Lipids and membrane function in green algae, Biochimica Et Biophysica Acta-2828 Lipids and Lipid Metabolism, vol.1302, issue.1, pp.17-45, 1996.

P. D. Bates, S. Stymne, and J. Ohlrogge, Biochemical pathways in seed oil synthesis, Current Opinion 2830 in, Plant Biology, vol.16, issue.3, pp.358-364, 2013.

R. J. Weselake, D. C. Taylor, M. H. Rahman, S. Shah, A. Laroche et al., Increasing 2832 the flow of carbon into seed oil, Biotechnology advances, vol.27, issue.6, pp.866-878, 2009.

C. F. Lu, J. A. Napier, T. E. Clemente, and E. B. Cahoon, New frontiers in oilseed biotechnology: meeting 2834 the global demand for vegetable oils for food, feed, biofuel, and industrial applications, Current 2835 Opinion in Biotechnology, vol.22, issue.2, pp.252-259, 2011.

N. Mori, T. Moriyama, M. Toyoshima, and N. Sato, Construction of global acyl lipid metabolic map by 2837 comparative genomics and subcellular localization analysis in the red alga Cyanidioschyzon merolae, Frontiers in plant science, vol.7, p.958, 2016.

M. I. Gurr, J. L. Harwood, K. N. Frayn, D. J. Murphy, and R. H. Michell, Lipids: Biochemistry, 2840 Biotechnology and Health, 2016.

C. Giroud, A. Gerber, and W. Eichenberger, Lipids of Chlamydomonas reinhardtii -analysis of 2842 molecular species and intracellular site(s) of biosynthesis, Plant and Cell Physiology, vol.29, issue.4, pp.587-2843, 1988.

C. Giroud and W. Eichenberger, Lipids of CHlamydomonas reinhardtii -incorporation of C-14 acetate, p.2845

, C-14 palmitate and C-14 oleate into different lipids and evidence for lipid-linked desaturation of fatty 2846 acids, Plant and Cell Physiology, vol.30, issue.1, pp.121-128, 1989.

C. Xu, C. Andre, J. Fan, and J. Shanklin, Cellular organization of triacylglycerol biosynthesis in 2848 microalgae, Sub-cellular biochemistry, vol.86, pp.207-228, 2016.

Y. Kim, E. L. Terng, W. R. Riekhof, E. B. Cahoon, and H. Cerutti, Endoplasmic reticulum acyltransferase 2850 with prokaryotic substrate preference contributes to triacylglycerol assembly in Chlamydomonas, Proc 2851 Natl Acad Sci, vol.115, pp.1652-1657, 2018.

J. L. Fan, C. Andre, and C. C. Xu, A chloroplast pathway for the de novo biosynthesis of triacylglycerol 2853 in Chlamydomonas reinhardtii, FEBS Letters, vol.585, issue.12, pp.1985-1991, 2011.

M. Hofmann and W. Eichenberger, Lipid and fatty acid composition of the marine brown alga 2855 dictyopteris membranacea, Plant and Cell Physiology, vol.38, issue.9, pp.1046-1052, 1997.

A. L. Jones and J. L. Harwood, Lipid composition of the brown algae fucus vesiculosus and Ascophyllum 2857 nodosum, vol.31, pp.3397-3403, 1992.

W. R. Riekhof and C. Benning, Chapter 2 -Glycerolipid biosynthesis

. Witman, The Chlamydomonas Sourcebook, pp.2860-2901, 2009.

L. J. Borowitzka, D. S. Kessly, and A. D. Brown, The salt relations of Dunaliella. Further observations on 2862 glycerol production and its regulation, Archives of microbiology, vol.113, issue.1-2, pp.131-139, 1977.

A. Goyal, Osmoregulation in Dunaliella, Part II: Photosynthesis and starch contribute carbon for 2864 glycerol synthesis during a salt stress in Dunaliella tertiolecta, Plant physiology and biochemistry : PPB 2865, vol.45, pp.705-715, 2007.

M. Cai, L. H. He, and T. Y. Yu, Molecular clone and expression of a NAD+-dependent glycerol-3-2867 phosphate dehydrogenase isozyme gene from the halotolerant alga Dunaliella salina, PLoS One, vol.8, issue.4, p.62287, 2013.

P. Song, L. Li, and J. Liu, Proteomic analysis in nitrogen-deprived Isochrysis galbana during lipid 2870 accumulation, PLoS One, vol.8, 2013.

H. Lv, G. Qu, X. Qi, L. Lu, C. Tian et al., Transcriptome analysis of Chlamydomonas reinhardtii 2872 during the process of lipid accumulation, Genomics, vol.101, 2013.

R. Zhang, W. Patena, U. Armbruster, S. S. Gang, S. R. Blum et al., High-throughput 2874 genotyping of green algal mutants reveals random distribution of mutagenic insertion sites and 2875 endonucleolytic cleavage of transforming DNA, The Plant Cell, vol.26, issue.4, pp.1398-1409, 2014.

Y. Yao, Y. Lu, K. Peng, T. Huang, Y. Niu et al., Glycerol and neutral lipid production in 2877 the oleaginous marine diatom Phaeodactylum tricornutum promoted by overexpression of glycerol-3-2878 phosphate dehydrogenase, Biotechnol Biofuels, vol.7, 2014.

V. A. Herrera-valencia, R. A. Us-vazquez, F. A. Larque-saavedra, and L. F. Barahona-perez, Naturally 2880 occurring fatty acid methyl esters and ethyl esters in the green microalga Chlamydomonas reinhardtii, Annals of Microbiology, vol.62, issue.2, pp.865-870, 2012.

A. E. Gomma, S. K. Lee, S. M. Sun, S. H. Yang, and G. Chung,

, Malonyl-CoA and glycerol-3-phosphate pools in Scenedesmus quadricauda, Indian journal of 2884 microbiology, vol.55, issue.4, pp.447-455, 2015.

L. L. Xue, H. H. Chen, and J. G. Jiang, Implications of glycerol metabolism for lipid production, Progress 2886 in lipid research, vol.68, pp.12-25, 2017.

D. Morales-sanchez, Y. Kim, E. L. Terng, L. Peterson, and H. Cerutti, A multidomain enzyme, with 2888 glycerol-3-phosphate dehydrogenase and phosphatase activities, is involved in a chloroplastic pathway 2889 for glycerol synthesis in Chlamydomonas reinhardtii, The Plant journal, vol.90, issue.6, 2017.

C. Bowler, A. E. Allen, J. H. Badger, J. Grimwood, K. Jabbari et al., The Phaeodactylum 2891 genome reveals the evolutionary history of diatom genomes, Nature, vol.456, issue.7219, pp.239-244, 2008.

Y. F. Niu, X. Wang, D. X. Hu, S. Balamurugan, D. W. Li et al., Molecular characterization 2893 of a glycerol-3-phosphate acyltransferase reveals key features essential for triacylglycerol production 2894 in Phaeodactylum tricornutum, Biotechnol Biofuels, vol.9, p.60, 2016.

J. Xu, Z. Zheng, and J. Zou, A membrane-bound glycerol-3-phosphate acyltransferase from 2896 Thalassiosira pseudonana regulates acyl composition of glycerolipids, p.2897, 2009.

U. Iskandarov, S. Sitnik, N. Shtaida, S. Didi-cohen, S. Leu et al., Cloning and 2898 characterization of a GPAT-like gene from the microalga Lobosphaera incisa (Trebouxiophyceae): 2899 overexpression in Chlamydomonas reinhardtii enhances TAG production, Journal of applied phycology, vol.2900, issue.2, pp.907-919, 2016.

L. L. Ouyang, H. Li, X. J. Yan, J. L. Xu, and Z. G. Zhou, Site-directed mutagenesis from Arg195 to His of a 2902 microalgal putatively chloroplastidial glycerol-3-phosphate acyltransferase causes an increase in 2903 phospholipid levels in yeast, Frontiers in plant science, vol.7, p.286, 2016.

Y. Yamaoka, D. Achard, S. Jang, B. Legeret, S. Kamisuki et al., , p.2905

, Chlamydomonas plastidial 2-lysophosphatidic acid acyltransferase and its use to engineer oil content, p.2906

, Plant Biotechnol J, vol.14, issue.11, pp.2158-2167, 2016.

S. Balamurugan, X. Wang, H. L. Wang, C. J. An, H. Li et al., Occurrence of plastidial 2908 triacylglycerol synthesis and the potential regulatory role of AGPAT in the model diatom 2909 Phaeodactylum tricornutum, vol.10, p.97, 2017.

N. Misra, P. Panda, and B. Parida, Genome-wide identification and evolutionary analysis of algal LPAT 2911 genes involved in TAG biosynthesis using bioinformatic approaches, p.2912, 2014.

T. Nobusawa, K. Hori, H. Mori, K. Kurokawa, and H. Ohta, Differently localized lysophosphatidic acid 2913 acyltransferases crucial for triacylglycerol biosynthesis in the oleaginous alga Nannochloropsis, The 2914 Plant journal, vol.90, issue.3, pp.547-559, 2017.

S. Lu, J. Wang, Q. Ma, J. Yang, X. Li et al., Phospholipid metabolism in an industry microalga 2916 Chlorella sorokiniana: the impact of inoculum sizes, PLoS One, vol.8, issue.8, p.70827, 2013.

C. H. Hung, K. Endo, K. Kobayashi, Y. Nakamura, and H. Wada, Characterization of Chlamydomonas 2918 reinhardtii phosphatidylglycerophosphate synthase in Synechocystis sp, Front Microbiol, vol.6803, p.842, 2015.

C. H. Hung, K. Kobayashi, H. Wada, and Y. Nakamura, Isolation and characterization of a 2921 phosphatidylglycerophosphate phosphatase1, PGPP1, Chlamydomonas reinhardtii, Plant physiology 2922 and biochemistry : PPB 92, pp.56-61, 2015.

K. Sugimoto, T. Midorikawa, M. Tsuzuki, and N. Sato, Upregulation of PG synthesis on sulfur-2924 starvation for PS I in Chlamydomonas, Biochemical and biophysical research communications, vol.369, issue.2, pp.660-665, 2008.

B. Pineau, J. Girard-bascou, S. Eberhard, Y. Choquet, A. Tremolieres et al., A 2927 single mutation that causes phosphatidylglycerol deficiency impairs synthesis of photosystem II cores 2928 in Chlamydomonas reinhardtii, European Journal of Biochemistry, vol.271, issue.2, pp.329-338, 2004.

M. D. Unitt and J. L. Harwood, Sidedness studies of thylakoid phosphatidylglycerol in higher plants, The Biochemical journal, vol.228, issue.3, pp.707-718, 1985.

A. Trémolières, O. Roche, G. Dubertret, D. Guyon, and J. Garnier, Restoration of thylakoid appression 2932 by ?3-trans-hexadecenoic acid-containing phosphatidylglycerol in a mutant of Chlamydomonas 2933 reinhardtii. Relationships with the regulation of excitation energy distribution, Biochimica et 2934 Biophysica Acta (BBA) -Bioenergetics, vol.1059, issue.3, pp.286-292, 1991.

J. L. Harwood, Plant mitochondrial lipids: structure, function and biosynthesis

. Day, Higher Plant Cell Respiration, p.71, 1985.

C. H. Hung, K. Kobayashi, H. Wada, and Y. Nakamura, Functional specificity of cardiolipin synthase 2939 revealed by the identification of a cardiolipin synthase CrCLS1 in Chlamydomonas reinhardtii, Front 2940 Microbiol, vol.6, p.1542, 2015.

X. Deng, J. Cai, and X. Fei, Involvement of phosphatidate phosphatase in the biosynthesis of 2942 triacylglycerols in Chlamydomonas reinhardtii, Journal of Zhejiang University SCIENCE B, vol.14, issue.12, pp.2943-1121, 2013.

M. J. Price-jones and J. L. Harwood, The control of CTP:choline-phosphate cytidylyltransferase activity 2945 in pea, The Biochemical journal, vol.240, issue.3, pp.837-879, 1986.

W. Yang, J. V. Moroney, and T. S. Moore, Membrane lipid biosynthesis in Chlamydomonas reinhardtii: 2947 ethanolaminephosphotransferase is capable of synthesizing both phosphatidylcholine and 2948 phosphatidylethanolamine, Archives of biochemistry and biophysics, vol.430, issue.2, pp.198-209, 2004.

W. Y. Yang, C. B. Mason, S. V. Pollock, T. Lavezzi, J. V. Moroney et al., Membrane lipid 2950 biosynthesis in Chlamydomonas reinhardtii: expression and characterization of CTP : 2951 phosphoethanolamine cytidylyltransferase, Biochemical Journal, vol.382, pp.51-57, 2004.

K. Sakurai, N. Mori, and N. Sato, Detection and characterization of phosphatidylcholine in various 2953 strains of the genus Chlamydomonas (Volvocales, Chlorophyceae), Journal of Plant Research, vol.127, issue.5, pp.641-650, 2014.

N. Sato, N. Mori, T. Hirashima, and T. Moriyama, Diverse pathways of phosphatidylcholine 2956 biosynthesis in algae as estimated by labeling studies and genomic sequence analysis, The Plant journal, vol.2957, issue.3, pp.281-92, 2016.

M. Williams and J. L. Harwood, Alternative pathways for phosphatidylcholine synthesis in olive (Olea 2959 europaea L.) callus cultures, The Biochemical journal, vol.304, issue.2, pp.463-471, 1994.

D. Han, J. Jia, J. Li, M. Sommerfeld, J. Xu et al., Metabolic remodeling of membrane glycerolipids 2961 in the microalga Nannochloropsis oceanica under nitrogen deprivation, Frontiers in Marine Science, vol.2962, issue.242, p.4, 2017.

B. Liu, A. Vieler, C. Li, A. Jones, and C. Benning, Triacylglycerol profiling of microalgae 2964

C. Reinhardtii and N. Oceanica, Bioresource Technology, vol.146, issue.0, pp.310-316, 2013.

P. Ulvskov, D. S. Paiva, D. Domozych, and J. Harholt, Classification, naming and evolutionary history of 2967 glycosyltransferases from sequenced green and red algal genomes, PLoS One, vol.8, issue.10, p.76511, 2013.

N. Sato and K. Awai, Diversity in biosynthetic pathways of galactolipids in the light of endosymbiotic 2969 origin of chloroplasts, Frontiers in plant science, vol.7, p.117, 2016.

N. Sato and T. Moriyama, Genomic and biochemical analysis of lipid biosynthesis in the unicellular 2971 rhodophyte Cyanidioschyzon merolae: Lack of a plastidic desaturation pathway results in the coupled 2972 pathway of galactolipid synthesis, Eukaryotic cell, vol.6, issue.6, pp.1006-1017, 2007.

J. Warakanont, C. Tsai, E. J. Michel, G. R. Murphy, P. Y. Hsueh et al., Chloroplast 2974 lipid transfer processes in Chlamydomonas reinhardtii involving a TRIGALACTOSYLDIACYLGLYCEROL 2 2975 (TGD2) orthologue, The Plant Journal, vol.84, issue.5, pp.1005-1020, 2015.

C. E. Pugh, A. B. Roy, T. Hawkes, and J. L. Harwood, A new pathway for the synthesis of the plant 2977 sulpholipid, sulphoquinovosyldiacylglycerol, The Biochemical journal, vol.309, issue.2, pp.513-522, 1995.

B. Essigmann, S. Guler, R. A. Narang, D. Linke, and C. Benning, Phosphate availability affects the 2979 thylakoid lipid composition and the expression of SQD1, a gene required for sulfolipid biosynthesis in 2980 Arabidopsis thaliana, Proc Natl Acad Sci U S A, vol.95, issue.4, pp.1950-1955, 1998.

B. Yu, C. Xu, and C. Benning, Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired 2982 in phosphate-limited growth, Proc Natl Acad Sci U S A, vol.99, issue.8, pp.5732-5739, 2002.

M. Shimojima, Biosynthesis and functions of the plant sulfolipid, Progress in lipid research, vol.50, issue.3, pp.234-243, 2011.

N. Sato, K. Terasawa, K. Miyajima, and Y. Kabeya, Organization, developmental dynamics, and 2986 evolution of plastid nucleoids, International review of cytology, vol.232, pp.217-62, 2003.

Y. Mizushina, N. Kasai, H. Iijima, F. Sugawara, H. Yoshida et al., Sulfo-quinovosyl-acyl-2988 glycerol (SQAG), a eukaryotic DNA polymerase inhibitor and anti-cancer agent, Current medicinal 2989 chemistry, Anti-cancer agents, vol.5, issue.6, pp.613-638, 2005.

K. Sugimoto, N. Sato, and M. Tsuzuki, Utilization of a chloroplast membrane sulfolipid as a major 2991 internal sulfur source for protein synthesis in the early phase of sulfur starvation in Chlamydomonas 2992 reinhardtii, FEBS Lett, vol.581, issue.23, pp.4519-4541, 2007.

N. M. Sanina, S. N. Goncharova, and E. Y. Kostetsky, Fatty acid composition of individual polar lipid 2994 classes from marine macrophytes, Phytochemistry, vol.65, issue.6, pp.721-751, 2004.

S. V. Khotimchenko, Distribution of glyceroglycolipids in marine algae and grasses, Chemistry of 2996 Natural Compounds, vol.38, pp.223-229, 2002.

X. Li, X. Fan, L. Han, and Q. Lou, Fatty acids of some algae from the Bohai Sea, Phytochemistry, vol.59, issue.2, pp.157-61, 2002.

S. Araki, T. Sakurai, A. Kawaguchi, and N. Murata, Positional distribution of fatty acids in glycerolipids 3000 of the marine red alga, Porphyra yezoensis, Plant and Cell Physiology, vol.28, issue.5, pp.761-766, 1987.

I. Khozin-goldberg, H. Z. Yu, D. Adlerstein, S. Didi-cohen, Y. M. Heimer et al., Triacylglycerols 3002 of the red microalga Porphyridium cruentum can contribute to the biosynthesis of eukaryotic 3003 galactolipids, Lipids, vol.35, issue.8, pp.881-889, 2000.

C. Y. Botte, Y. Yamaryo-botte, J. Janouskovec, T. Rupasinghe, P. J. Keeling et al., 3005 Identification of plant-like galactolipids in Chromera velia, a photosynthetic relative of malaria 3006 parasites, J Biol Chem, vol.286, issue.34, pp.29893-903, 2011.

N. Sato, Dual role of methionine in the biosynthesis of diacylglyceryltrimethylhomoserine in 3008 Chlamydomonas reinhardtii, Plant Physiol, vol.86, issue.3, pp.931-935, 1988.

M. Hofmann, W. Eichenberger, N. Biosynthesis-of-diacylglyceryl-n, and N. -trimethylhomoserine, , vol.3010

, Rhodobacter sphaeroides and evidence for lipid-linked N methylation, Journal of bacteriology, vol.178, issue.21, pp.6140-6144, 1996.

J. Popko, C. Herrfurth, K. Feussner, T. Ischebeck, T. Iven et al., Metabolome analysis 3013 reveals betaine lipids as major source for triglyceride formation, and the accumulation of 3014 sedoheptulose during nitrogen-starvation of Phaeodactylum tricornutum, PLoS One, vol.11, issue.10, p.164673, 2016.

G. Vogel and W. Eichenberger, Betaine lipids in lower plants. Biosynthesis of DGTS and DGTA, p.3017

, Ochromonas danica (Chrysophyceae) and the possible role of DGTS in lipid metabolism, Plant and Cell, vol.3018, issue.4, pp.427-436, 1992.

A. Makewicz, C. Gribi, and W. Eichenberger, Lipids of Ectocarpus fasciculatus

, Incorporation of [l-14C]oleate and the role of TAG and MGDG in lipid metabolism, Plant and Cell, vol.3021, issue.8, pp.952-962, 1997.

M. Hofmann and W. Eichenberger, Radiolabelling studies on the lipid metabolism in the marine 3023 brown alga Dictyopteris membranacea, Plant and Cell Physiology, vol.39, issue.5, pp.508-515, 1998.

K. L. Smith, G. W. Bryan, and J. L. Harwood, Changes in the lipid metabolism of fucus serratus and fucus 3025 vesiculosus caused by copper, Biochimica et Biophysica Acta (BBA) -Lipids and Lipid Metabolism, vol.796, issue.1, pp.119-122, 1984.

W. Eichenberger and C. Gribi, Lipids of Pavlova lutheri: Cellular site and metabolic role of DGCC, Phytochemistry, vol.3028, issue.8, pp.1561-1567, 1997.

Z. Y. Du and C. Benning, Triacylglycerol accumulation in photosynthetic cells in plants and algae, pp.179-205, 2016.

Q. Hu, M. Sommerfeld, E. Jarvis, M. Ghirardi, M. Posewitz et al., Microalgal 3032 triacylglycerols as feedstocks for biofuel production: perspectives and advances, The Plant Journal, vol.3033, issue.4, pp.621-639, 2008.

C. Tsai, J. Warakanont, T. Takeuchi, B. B. Sears, E. R. Moellering et al., , p.3035

, Compromised Hydrolysis of Triacylglycerols 7 (CHT7) acts as a repressor of cellular quiescence in 3036

. Chlamydomonas, Proceedings of the National Academy of Sciences, vol.111, issue.44, pp.15833-15838, 2014.

C. Cagnon, B. Mirabella, H. M. Nguyen, A. Beyly-adriano, S. Bouvet et al., Development 3038 of a forward genetic screen to isolate oil mutants in the green microalga Chlamydomonas reinhardtii, Biotechnology for Biofuels, vol.3039, issue.1, p.178, 2013.

J. J. Park, H. Wang, M. Gargouri, R. R. Deshpande, J. N. Skepper et al., The response 3041 of Chlamydomonas reinhardtii to nitrogen deprivation: a systems biology analysis, The Plant journal, vol.3042, issue.4, pp.611-635, 2015.

D. Hemme, D. Veyel, T. Mühlhaus, F. Sommer, J. Jüppner et al., Systems-wide 3044 analysis of acclimation responses to long-term heat stress and recovery in the photosynthetic model 3045 organism Chlamydomonas reinhardtii, The Plant Cell, vol.26, issue.11, pp.4270-4297, 2014.

G. O. James, C. H. Hocart, W. Hillier, H. Chen, F. Kordbacheh et al., Fatty acid profiling 3047 of Chlamydomonas reinhardtii under nitrogen deprivation, Bioresource Technology, vol.102, issue.3, pp.3343-3351, 2011.

E. R. Moellering and C. Benning, RNA interference silencing of a major lipid droplet protein affects 3050 lipid droplet size in Chlamydomonas reinhardtii, Eukaryotic cell, vol.9, issue.1, pp.97-106, 2010.

H. M. Nguyen, M. Baudet, S. Cuiné, J. Adriano, D. Barthe et al., Proteomic profiling 3052 of oil bodies isolated from the unicellular green microalga Chlamydomonas reinhardtii: With focus on 3053 proteins involved in lipid metabolism, Proteomics, vol.11, issue.21, pp.4266-4273, 2011.

A. Dahlqvist, U. Stahl, M. Lenman, A. Banas, M. Lee et al., Phospholipid : 3055 diacylglycerol acyltransferase: An enzyme that catalyzes the acyl-CoA-independent formation of 3056 triacylglycerol in yeast and plants, Proceedings of the National Academy of Sciences of the United, vol.3057, issue.12, pp.6487-6492, 2000.

W. Banas, A. Garcia, A. Banas, and S. Stymne, Activities of acyl-CoA:diacylglycerol 3059 acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase (PDAT) in microsomal 3060 preparations of developing sunflower and safflower seeds, Planta, vol.237, issue.6, pp.1627-1663, 2013.

H. K. Woodfield, A. Cazenave-gassiot, R. P. Haslam, I. A. Guschina, M. R. Wenk et al., Using 3062 lipidomics to reveal details of lipid accumulation in developing seeds from oilseed rape (Brassica napus 3063 L.), Biochim Biophys Acta, vol.1863, issue.3, pp.339-348, 2018.

K. Yoon, D. Han, Y. Li, M. Sommerfeld, and Q. Hu, Phospholipid:diacylglycerol acyltransferase is a 3065 multifunctional enzyme involved in membrane lipid turnover and degradation while synthesizing 3066 triacylglycerol in the unicellular green microalga Chlamydomonas reinhardtii, The Plant Cell, vol.24, issue.9, pp.3708-3724, 2012.

M. L. Russa, C. Bogen, A. Uhmeyer, A. Doebbe, E. Filippone et al., Functional analysis 3069 of three type-2 DGAT homologue genes for triacylglycerol production in the green microalga 3070 Chlamydomonas reinhardtii, Journal of biotechnology, vol.162, issue.1, pp.13-20, 2012.

C. Hung, M. Ho, K. Kanehara, and Y. Nakamura, Functional study of diacylglycerol 3072 acyltransferase type 2 family in Chlamydomonas reinhardtii, FEBS Letters, vol.587, issue.15, pp.2364-2370, 2013.

X. D. Deng, B. Gu, Y. J. Li, X. W. Hu, J. C. Guo et al., The roles of acyl-CoA: diacylglycerol 3074 acyltransferase 2 genes in the biosynthesis of triacylglycerols by the green algae Chlamydomonas 3075 reinhardtii, Molecular plant, vol.5, issue.4, pp.945-947, 2012.

J. E. Chen and A. G. Smith, A look at diacylglycerol acyltransferases (DGATs) in algae, Journal of 3077 biotechnology, vol.162, issue.1, pp.28-39, 2012.

A. C. Turchetto-zolet, F. S. Maraschin, G. L. De-morais, A. Cagliari, C. M. Andrade et al., , p.3079

. Pinheiro, Evolutionary view of acyl-CoA diacylglycerol acyltransferase (DGAT), a key enzyme in 3080 neutral lipid biosynthesis, BMC evolutionary biology, vol.11, p.263, 2011.

F. Guiheneuf, S. Leu, A. Zarka, I. Khozin-goldberg, I. Khalilov et al., Cloning and molecular 3082 characterization of a novel acyl-CoA:diacylglycerol acyltransferase 1-like gene (PtDGAT1) from the 3083 diatom Phaeodactylum tricornutum, FEBS Journal, vol.278, issue.19, pp.3651-3666, 2011.

J. Liu, D. Han, K. Yoon, Q. Hu, and Y. Li, Characterization of type 2 diacylglycerol acyltransferases in 3085

, Chlamydomonas reinhardtii reveals their distinct substrate specificities and functions in triacylglycerol 3086 biosynthesis, The Plant journal, vol.86, issue.1, pp.3-19, 2016.

M. Wagner, K. Hoppe, T. Czabany, M. Heilmann, G. Daum et al., Identification and 3088 characterization of an acyl-CoA:diacylglycerol acyltransferase 2 (DGAT2) gene from the microalga O. 3089 tauri, Plant physiology and biochemistry, PPB, vol.48, issue.6, pp.407-423, 2010.

Y. Gong, J. Zhang, X. Guo, X. Wan, Z. Liang et al., , p.3091

, PtDGAT2B, an acyltransferase of the DGAT2 acyl-coenzyme A: diacylglycerol acyltransferase family in 3092 the diatom Phaeodactylum tricornutum, FEBS Lett, vol.587, issue.5, pp.481-488, 2013.

M. Terashima, M. Specht, and M. Hippler, The chloroplast proteome: a survey from the 3094

, Chlamydomonas reinhardtii perspective with a focus on distinctive features, Current Genetics, vol.57, issue.3, pp.151-168, 2011.

X. Chen, G. Hu, and L. Liu, Hacking an algal transcription factor for lipid biosynthesis, Trends in plant 3097 science, vol.23, issue.3, pp.181-184, 2018.

M. C. Posewitz, Algal oil productivity gets a fat bonus, Nat Biotechnol, vol.35, issue.7, pp.636-638, 2017.

E. C. Goncalves, A. C. Wilkie, M. Kirst, and B. Rathinasabapathi, Metabolic regulation of triacylglycerol 3100 accumulation in the green algae: identification of potential targets for engineering to improve oil yield, p.3101

, Plant Biotechnol J, vol.14, issue.8, pp.1649-60, 2016.

N. Wase and B. Tu, Identification and metabolite profiling of chemical activators of lipid 3103 accumulation in green algae, vol.174, pp.2146-2165, 2017.

J. Fan, C. Yan, C. Andre, J. Shanklin, J. Schwender et al., Oil accumulation is controlled by carbon 3105 precursor supply for fatty acid synthesis in Chlamydomonas reinhardtii, Plant & cell physiology, vol.53, issue.8, pp.1380-90, 2012.

M. Iwai, K. Ikeda, M. Shimojima, and H. Ohta, Enhancement of extraplastidic oil synthesis in 3108

, Chlamydomonas reinhardtii using a type-2 diacylglycerol acyltransferase with a phosphorus starvation-3109 inducible promoter, Plant Biotechnol J, vol.12, 2014.

K. Zienkiewicz, Z. Y. Du, W. Ma, K. Vollheyde, and C. Benning, Stress-induced neutral lipid biosynthesis 3111 in microalgae -Molecular, cellular and physiological insights, Biochim Biophys Acta, vol.1861, issue.9, pp.3112-1269, 2016.

G. Breuer, P. P. Lamers, D. E. Martens, R. B. Draaisma, and R. H. Wijffels, The impact of nitrogen 3114 starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains, Bioresource, vol.3115, pp.217-226, 2012.

O. Levitan, J. Dinamarca, E. Zelzion, D. S. Lun, L. T. Guerra et al.,

P. G. Bhattacharya and . Falkowski, Remodeling of intermediate metabolism in the diatom Phaeodactylum 3118 tricornutum under nitrogen stress, Proceedings of the National Academy of Sciences, vol.112, issue.2, pp.3119-412, 2015.

D. Simionato, M. A. Block, N. L. Rocca, J. Jouhet, E. Marechal et al., The response of 3121 Nannochloropsis gaditana to nitrogen starvation includes de novo biosynthesis of triacylglycerols, a 3122 decrease of chloroplast galactolipids, and reorganization of the photosynthetic apparatus, Eukaryotic 3123 cell, vol.12, issue.5, pp.665-76, 2013.

E. C. Goncalves, J. V. Johnson, and B. Rathinasabapathi, Conversion of membrane lipid acyl groups to 3125 triacylglycerol and formation of lipid bodies upon nitrogen starvation in biofuel green algae Chlorella 3126 UTEX29, Planta, vol.238, issue.5, pp.895-906, 2013.

E. M. Trentacoste, R. P. Shrestha, S. R. Smith, C. Glé, A. C. Hartmann et al., 3128 Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without 3129 compromising growth, Proceedings of the National Academy of Sciences, vol.110, issue.49, pp.19748-19753, 2013.

J. W. Allen, C. C. Dirusso, and P. N. Black, Triacylglycerol synthesis during nitrogen stress involves the 3131 prokaryotic lipid synthesis pathway and acyl chain remodeling in the microalgae Coccomyxa 3132 subellipsoidea, Algal Research, vol.10, pp.110-120, 2015.

Z. T. Wang, N. Ullrich, S. Joo, S. Waffenschmidt, and U. Goodenough, Algal lipid bodies: stress 3134 induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas 3135 reinhardtii, Eukaryotic cell, vol.8, issue.12, pp.1856-1868, 2009.

H. Goold, F. Beisson, G. Peltier, and Y. Li-beisson, Microalgal lipid droplets: composition, diversity, 3137 biogenesis and functions, vol.34, pp.545-55, 2015.

N. Huang, M. Huang, T. L. Chen, and A. H. Huang, Oleosin of subcellular lipid droplets evolved 3139 in green algae, Plant Physiology, vol.161, issue.4, pp.1862-1874, 2013.

O. Gorelova, O. Baulina, A. Solovchenko, I. Selyakh, O. Chivkunova et al., 3141 Coordinated rearrangements of assimilatory and storage cell compartments in a nitrogen-starving 3142 symbiotic chlorophyte cultivated under high light, Archives of microbiology, vol.197, issue.2, pp.181-95, 2015.

D. Wang, K. Ning, J. Li, J. Hu, D. Han et al., Nannochloropsis genomes reveal evolution 3144 of microalgal oleaginous traits, PLoS genetics, vol.10, issue.1, p.1004094, 2014.

A. Taleb, J. Pruvost, J. Legrand, H. Marec, B. Le-gouic et al., Development and 3146 validation of a screening procedure of microalgae for biodiesel production: Application to the genus of 3147 marine microalgae Nannochloropsis, Bioresource Technology, vol.177, pp.224-232, 2015.

J. Jia, D. Han, H. G. Gerken, Y. Li, M. Sommerfeld et al., Molecular mechanisms for 3149 photosynthetic carbon partitioning into storage neutral lipids in Nannochloropsis oceanica under 3150 nitrogen-depletion conditions, Algal Research, vol.7, pp.66-77, 2015.

F. Barka, M. Angstenberger, T. Ahrendt, W. Lorenzen, H. B. Bode et al., Identification of a 3152 triacylglycerol lipase in the diatom Phaeodactylum tricornutum, Biochim Biophys Acta, vol.1861, issue.3, pp.3153-239, 2016.

H. Siegler, O. Valerius, T. Ischebeck, J. Popko, N. J. Tourasse et al., Analysis of the lipid 3155 body proteome of the oleaginous alga Lobosphaera incisa, BMC plant biology, vol.17, issue.1, p.98, 2017.

P. J. Eastmond, SUGAR-DEPENDENT1 encodes a patatin domain triacylglycerol lipase that initiates 3157 storage oil breakdown in germinating Arabidopsis seeds, Plant Cell, vol.18, issue.3, pp.665-675, 2006.

X. B. Li, C. Benning, and M. H. Kuo, Rapid triacylglycerol turnover in Chlamydomonas reinhardtii 3159 requires a lipase with broad substrate specificity, Eukaryotic cell, vol.11, issue.12, pp.1451-1462, 2012.

X. Li, Y. Pan, and H. Hu, Identification of the triacylglycerol lipase in the chloroplast envelope of the 3161 diatom Phaeodactylum tricornutum, Algal Research, vol.33, pp.440-447, 2018.

C. Plancke, H. Vigeolas, R. Hohner, S. Roberty, B. Emonds-alt et al., Lack of isocitrate 3163 lyase in Chlamydomonas leads to changes in carbon metabolism and in the response to oxidative stress 3164 under mixotrophic growth, The Plant journal, vol.77, issue.3, pp.404-421, 2014.

A. M. Ruffing and H. D. Jones, Physiological effects of free fatty acid production in genetically 3166 engineered Synechococcus elongatus PCC 7942, Biotechnology and Bioengineering, vol.109, issue.9, pp.2190-3167, 2012.

S. Eaton, K. Bartlett, and M. Pourfarzam, Mammalian mitochondrial beta-oxidation, Biochemical, vol.3169, issue.2, pp.345-357, 1996.

Y. Poirier, V. D. Antonenkov, T. Glumoff, and J. K. Hiltunen, Peroxisomal beta-oxidation -A metabolic 3171 pathway with multiple functions, Biochimica Et Biophysica Acta-Molecular Cell Research, vol.1763, issue.12, pp.1413-1426, 2006.

J. K. Hiltunen, A. M. Mursula, H. Rottensteiner, R. K. Wierenga, A. J. Kastaniotis et al., The 3174 biochemistry of peroxisomal beta-oxidation in the yeast Saccharomyces cerevisiae, FEMS microbiology 3175 reviews, vol.27, issue.1, pp.35-64, 2003.

M. A. Troncoso-ponce, X. Cao, Z. Yang, and J. B. Ohlrogge, Lipid turnover during senescence, Plant 3177 Science, pp.13-19, 2013.

F. Camões, M. Islinger, S. C. Guimarães, S. Kilaru, M. Schuster et al., New insights 3179 into the peroxisomal protein inventory: Acyl-CoA oxidases and -dehydrogenases are an ancient feature 3180 of peroxisomes, Biochimica et Biophysica Acta (BBA) -Molecular Cell Research, vol.1853, issue.1, pp.111-3181, 2015.

R. L. Farr, C. Lismont, S. R. Terlecky, and M. Fransen, Peroxisome biogenesis in mammalian cells: The 3183 impact of genes and environment, Biochimica Et Biophysica Acta-Molecular Cell Research, vol.1863, issue.5, pp.1049-1060, 2016.

S. Eaton, Control of mitochondrial beta-oxidation flux, Progress in lipid research, vol.41, issue.3, pp.3186-197, 2002.

H. Stabenau, U. Winkler, and W. , Saftel, beta-oxidation in algal peroxisomes of the leaf and 3188 unspecialized type, Plant Physiology, vol.75, pp.79-79, 1984.

H. Stabenau, U. Winkler, and W. Saftel, Enzymes of beta-oxidation in different types of algal 3190 microbodies, Plant Physiol, vol.75, issue.3, pp.531-534, 1984.

H. Stabenau, Microbodies in different algae, p.3192

, Compartments in algal cells and their interaction, pp.3193-183, 1984.

H. Stabenau, U. Winkler, and W. Saftel, Compartimentation of enzymes of the beta-oxidation 3195 pathway in different types of algae, Biological Chemistry Hoppe-Seyler, vol.369, issue.1, pp.19-19, 1988.

U. Winkler, W. Saftel, and H. Stabenau, Beta-oxidation of fatty acids in algae -localization of thiolase 3197 and acyl-CoA oxidizing enzymes in 3 different organisms, Planta, vol.175, issue.1, pp.91-98, 1988.

Z. Swigonova, A. W. Mohsen, and J. Vockley, Acyl-CoA dehydrogenases: Dynamic history of protein 3199 family evolution, Journal of molecular evolution, vol.69, issue.2, pp.176-93, 2009.

R. Miller, G. Wu, R. R. Deshpande, A. Vieler, K. Gartner et al., Changes in transcript 3201 abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of 3202 metabolism, Plant Physiol, vol.154, 2010.

S. S. Merchant, S. E. Prochnik, O. Vallon, E. H. Harris, S. J. Karpowicz et al., The 3204 Chlamydomonas genome reveals the evolution of key animal and plant functions, Science, vol.318, issue.5848, pp.245-250, 2007.

S. Goepfert, C. Vidoudez, C. Tellgren-roth, S. Delessert, J. K. Hiltunen et al., Peroxisomal 3207 ?3,?2-enoyl CoA isomerases and evolution of cytosolic paralogues in embryophytes, The Plant Journal, vol.3208, issue.5, pp.728-742, 2008.

H. Beevers, Microbodies in higher-plants, Annual review of plant physiology and plant molecular 3210 biology, vol.30, pp.159-193, 1979.

J. Kato, T. Yamahara, K. Tanaka, S. Takio, and T. Satoh, Characterization of catalase from green algae 3212 Chlamydomonas reinhardtii, Journal of Plant Physiology, vol.151, issue.3, pp.262-268, 1997.

M. Hagemann, R. Kern, V. G. Maurino, D. T. Hanson, A. P. Weber et al., Evolution of 3214 photorespiration from cyanobacteria to land plants, considering protein phylogenies and acquisition 3215 of carbon concentrating mechanisms, Journal of experimental botany, vol.67, issue.10, pp.2963-76, 2016.

M. H. Aboelmy and C. Peterhansel, Enzymatic characterization of Chlamydomonas reinhardtii 3217 glycolate dehydrogenase and its nearest proteobacterial homologue, Plant physiology and 3218 biochemistry, PPB, vol.79, pp.25-30, 2014.

P. J. Eastmond, MONODEHYROASCORBATE REDUCTASE4 is required for seed storage oil 3220 hydrolysis and postgerminative growth in Arabidopsis, The Plant Cell, vol.19, issue.4, pp.1376-1387, 2007.

G. Noctor, G. Queval, and B. Gakiere, NAD(P) synthesis and pyridine nucleotide cycling in plants and 3222 their potential importance in stress conditions, Journal of experimental botany, vol.57, issue.8, pp.1603-1623, 2006.

K. Bernhardt, S. Wilkinson, A. P. Weber, and N. Linka, A peroxisomal carrier delivers NAD+ and 3224 contributes to optimal fatty acid degradation during storage oil mobilization, The Plant Journal, vol.69, issue.1, pp.1-13, 2012.

I. J. Mettler and H. Beevers, Oxidation of NADH in glyoxysomes by a malate-aspartate shuttle, Physiology, vol.3227, issue.4, pp.555-560, 1980.

C. W. Van-roermund, M. G. Schroers, J. Wiese, F. Facchinelli, and S. Kurz, The peroxisomal NAD carrier 3229 from Arabidopsis imports NAD in exchange with AMP, vol.171, pp.2127-2166, 2016.

K. Bernhardt, S. Wilkinson, A. P. Weber, and N. Linka, A peroxisomal carrier delivers NAD(+) and 3231 contributes to optimal fatty acid degradation during storage oil mobilization, The Plant journal, vol.69, issue.1, pp.1-13, 2012.

C. W. Vanroermund, Y. Elgersma, N. Singh, R. J. Wanders, and H. F. Tabak, The membrane of 3234 peroxisomes in Saccharomyces-cerevisiae is permeable to NAD(H) and acetyl-CoA under in vivo 3235 conditions, EMBO Journal, vol.14, issue.14, pp.3480-3486, 1995.

S. D. Lemaire, A. Quesada, F. Merchan, J. M. Corral, M. I. Igeno et al., NADP-malate 3237 dehydrogenase from unicellular green alga Chlamydomonas reinhardtii. A first step toward redox 3238 regulation?, Plant Physiol, vol.137, issue.2, pp.514-535, 2005.

I. Pracharoenwattana, W. X. Zhou, and S. M. Smith, Fatty acid beta-oxidation in germinating 3240 Arabidopsis seeds is supported by peroxisomal hydroxypyruvate reductase when malate 3241 dehydrogenase is absent, Plant Molecular Biology, vol.72, issue.1-2, pp.101-109, 2010.

I. A. Graham and P. J. Eastmond, Pathways of straight and branched chain fatty acid catabolism in 3243 higher plants, Progress in lipid research, vol.41, issue.2, pp.156-181, 2002.

S. Penfield, H. M. Pinfield-wells, and I. A. Graham, Storage reserve mobilisation and seedling 3245 establishment in Arabidopsis, vol.3246, p.100, 2006.

F. L. Theodoulou and P. J. Eastmond, Seed storage oil catabolism: a story of give and take, Current 3248 Opinion in, Plant Biology, vol.15, issue.3, pp.322-328, 2012.

J. Ueda, K. Miyamoto, M. Aoki, T. Hirata, T. Sato et al., , p.3250

S. Chlorella, Bulletin of the University of Osaka Prefecture. Ser. B, Agriculture and biology, vol.3251, pp.103-108, 1991.

T. M. Arnold, N. M. Targett, C. E. Tanner, W. I. Hatch, and K. E. Ferrari, Evidence for methyl jasmonate 3253 induced phlorotannin production in Fuus vesiculosus (Phaeophyceae), Journal of Phycology, vol.37, issue.6, pp.1026-1029, 2001.

S. Aslan and I. K. Kapdan, Batch kinetics of nitrogen and phosphorus removal from synthetic 3256 wastewater by algae, Ecological Engineering, vol.28, issue.1, pp.64-70, 2006.

S. Daliry, A. Hallajsani, J. Roshandeh, H. Nouri, and A. Golzary, Investigation of optimal 3258 condition for Chlorella vulgaris microalgae growth, Global Journal of Environmental Science, vol.3259, issue.2, pp.217-230, 2017.

I. Khozin-goldberg and Z. Cohen, The effect of phosphate starvation on the lipid and fatty acid 3261 composition of the fresh water eustigmatophyte Monodus subterraneus, Phytochemistry, vol.67, issue.7, pp.696-701, 2006.

G. Breuer, P. P. Lamers, D. E. Martens, R. B. Draaisma, and R. H. Wijffels, Effect of light intensity, pH, 3264 and temperature on triacylglycerol (TAG) accumulation induced by nitrogen starvation in Scenedesmus 3265 obliquus, Bioresource Technology, vol.143, pp.1-9, 2013.

J. Fan, Y. Cui, M. Wan, W. Wang, and Y. Li, Lipid accumulation and biosynthesis genes response of the 3267 oleaginous Chlorella pyrenoidosa under three nutrition stressors, Biotechnol Biofuels, vol.7, 2014.

E. T. Yu, F. J. Zendejas, P. D. Lane, S. Gaucher, B. A. Simmons et al., Triacylglycerol 3269 accumulation and profiling in the model diatoms Thalassiosira pseudonana and Phaeodactylum 3270 tricornutum (Baccilariophyceae) during starvation, Journal of applied phycology, vol.21, issue.6, p.669, 2009.

C. Wan, F. Bai, and X. Zhao, Effects of nitrogen concentration and media replacement on cell 3272 growth and lipid production of oleaginous marine microalga Nannochloropsis oceanica DUT01, Biochemical Engineering Journal, vol.3273, pp.32-38, 2013.

D. L. Alonso, E. H. Belarbi, J. M. Fernandez-sevilla, J. Rodriguez-ruiz, and E. Molina-grima, Acyl lipid 3275 composition variation related to culture age and nitrogen concentration in continuous culture of the 3276 microalga Phaeodactylum tricornutum, Phytochemistry, vol.54, issue.5, pp.461-71, 2000.

X. Huang, Z. Huang, W. Wen, and J. Yan, Effects of nitrogen supplementation of the culture medium 3278 on the growth, total lipid content and fatty acid profiles of three microalgae (Tetraselmis 3279 subcordiformis, Nannochloropsis oculata and Pavlova viridis), Journal of applied phycology, vol.25, issue.1, pp.129-137, 2013.

C. W. Chang, J. L. Moseley, D. Wykoff, and A. R. Grossman, The LPB1 gene is important for acclimation 3282 of Chlamydomonas reinhardtii to phosphorus and sulfur deprivation, Plant Physiology, vol.138, issue.1, pp.319-329, 2005.

M. Devi and S. Venkata-mohan, CO2 supplementation to domestic wastewater enhances 3285 microalgae lipid accumulation under mixotrophic microenvironment: Effect of sparging period and 3286 interval, Bioresource Technology, vol.112, pp.116-123, 2012.

H. Otsuka, Changes of lipid and carbohydrate contents in Chlorella cells during the sulfur 3288 starvation, as studied by the technique of synchronous cutlure, The Journal of General and Applied 3289 Microbiology, vol.7, issue.1, pp.72-77, 1961.

T. Matthew, W. X. Zhou, J. Rupprecht, L. Lim, S. R. Thomas-hall et al., The metabolome 3291 of Chlamydomonas reinhardtii following induction of anaerobic H2 production by sulfur depletion, Journal of Biological Chemistry, vol.3292, issue.35, pp.23415-23425, 2009.

J. L. Harwood and R. G. Nicholls, The plant sulpholipid--a major component of the sulphur cycle, Biochemical Society transactions, vol.3294, issue.2, pp.440-447, 1979.

A. B. Roy, M. J. Hewlins, A. J. Ellis, J. L. Harwood, and G. F. White, Glycolytic breakdown of 3296 sulfoquinovose in bacteria: a missing link in the sulfur cycle, Appl Environ Microbiol, vol.69, issue.11, pp.6434-3297, 2003.

J. C. Traller and M. Hildebrand, High throughput imaging to the diatom Cyclotella cryptica 3299 demonstrates substantial cell-to-cell variability in the rate and extent of triacylglycerol accumulation, p.3300

, Algal Research-Biomass Biofuels and Bioproducts, vol.2, issue.3, pp.244-252, 2013.

C. Adams and B. Bugbee, Enhancing lipid production of the marine diatom Chaetoceros gracilis: 3302 synergistic interactions of sodium chloride and silicon, Journal of applied phycology, vol.26, issue.3, pp.1351-3303, 2014.

Y. Jiang, M. Nunez, K. S. Laverty, and A. Quigg, Coupled effect of silicate and nickel on the growth and 3305 lipid production in the diatom Nitzschia perspicua, Journal of applied phycology, vol.27, issue.3, pp.1137-3306, 2015.

F. J. Zendejas, P. I. Benke, P. D. Lane, B. A. Simmons, and T. W. Lane, Characterization of the acylglycerols 3308 and resulting biodiesel derived from vegetable oil and microalgae (Thalassiosira pseudonana and 3309 Phaeodactylum tricornutum), Biotechnol Bioeng, vol.109, issue.5, pp.1146-54, 2012.

P. Zhao, W. Gu, S. Wu, A. Huang, L. He et al., Silicon enhances the growth of 3311 Phaeodactylum tricornutum Bohlin under green light and low temperature, Scientific reports, vol.4, p.3958, 2014.

N. Sato, M. Tsuzuki, and A. Kawaguchi, Glycerolipid synthesis in Chlorella kessleri 11h. I. Existence of 3314 a eukaryotic pathway, 2003.

G. Chang, Z. Luo, S. Gu, Q. Wu, M. Chang et al., Fatty acid shifts and metabolic activity changes 3316 of Schizochytrium sp. S31 cultured on glycerol, Bioresour Technol, vol.142, pp.255-60, 2013.

E. J. Lohman, R. D. Gardner, L. D. Halverson, B. M. Peyton, and R. Gerlach, Carbon partitioning in lipids 3318 synthesized by Chlamydomonas reinhardtii when cultured under three unique inorganic carbon 3319 regimes, Algal Research, vol.5, pp.171-180, 2014.

L. Yang, J. Chen, S. Qin, M. Zeng, Y. Jiang et al., Growth and lipid accumulation by different 3321 nutrients in the microalga Chlamydomonas reinhardtii, Biotechnol Biofuels, vol.11, p.40, 2018.

M. I. Khan, J. H. Shin, and J. D. Kim, The promising future of microalgae: current status, challenges, and 3323 optimization of a sustainable and renewable industry for biofuels, feed, and other products, Microb 3324 Cell Fact, vol.17, issue.1, p.36, 2018.

J. Kropat, A. Hong-hermesdorf, D. Casero, P. Ent, M. Castruita et al., A revised mineral 3326 nutrient supplement increases biomass and growth rate in Chlamydomonas reinhardtii, Plant J, vol.66, p.3327, 2011.

E. I. Urzica, A. Vieler, A. Hong-hermesdorf, M. D. Page, D. Casero et al., Remodeling 3329 of membrane lipids in iron-starved Chlamydomonas, Journal of Biological Chemistry, vol.288, issue.42, pp.3330-30246, 2013.

M. Hanikenne, S. S. Merchant, and P. Hamel, Chapter 10 -Transition metal nutrition: A balance 3332 between deficiency and toxicity, The Chlamydomonas, p.3333

. Sourcebook, , pp.333-399, 2009.

Z. Y. Liu, G. C. Wang, and B. C. Zhou, Effect of iron on growth and lipid accumulation in Chlorella 3335 vulgaris, Bioresource Technology, vol.99, issue.11, pp.4717-4722, 2008.

M. Roncel, A. A. Gonzalez-rodriguez, B. Naranjo, P. Bernal-bayard, A. M. Lindahl et al., Iron deficiency induces a partial inhibition of the photosynthetic electron transport and a high 3338 sensitivity to light in the diatom Phaeodactylum tricornutum, Frontiers in plant science, vol.7, p.1050, 2016.

A. Hemschemeier, D. Casero, B. Liu, C. Benning, M. Pellegrini et al., COPPER RESPONSE 3340 REGULATOR1-dependent and -independent responses of the Chlamydomonas reinhardtii 3341 transcriptome to dark anoxia, The Plant Cell, vol.25, issue.9, pp.3186-3211, 2013.

I. Rocchetta, M. Mazzuca, V. Conforti, L. Ruiz, V. Balzaretti et al., Effect of 3343 chromium on the fatty acid composition of two strains of Euglena gracilis, Environmental Pollution, vol.3344, issue.2, pp.353-358, 2006.

T. Brembu, M. Jorstad, P. Winge, K. C. Valle, and A. M. Bones, Genome-wide profiling of responses to 3346 cadmium in the diatom Phaeodactylum tricornutum, Environmental science & technology, vol.45, issue.18, pp.7640-7647, 2011.

I. Krzeminska, B. Pawlik-skowronska, M. Trzcinska, and J. Tys, Influence of photoperiods on the 3349 growth rate and biomass productivity of green microalgae, Bioprocess and biosystems engineering, vol.3350, issue.4, pp.735-776, 2014.

C. P. Ye, M. C. Zhang, Y. F. Yang, and G. Thirumaran, Photosynthetic performance in aquatic and 3352 terrestrial colonies of Nostoc flagelliforme (Cyanophyceae) under aquatic and aerial conditions, Journal 3353 of Arid Environments, vol.85, pp.56-61, 2012.

Y. Kitaya, H. Azuma, and M. Kiyota, Effects of temperature, CO2/O2 concentrations and light intensity 3355 on cellular multiplication of microalgae, Euglena gracilis, Advances in Space Research, vol.35, issue.9, pp.3356-1584, 2005.

A. P. Carvalho and F. X. Malcata, Optimization of omega-3 fatty acid production by microalgae: 3358 crossover effects of CO2 and light intensity under batch and continuous cultivation modes, Marine 3359 biotechnology, vol.7, pp.381-389, 2005.

D. Pal, I. Khozin-goldberg, Z. Cohen, and S. Boussiba, The effect of light, salinity, and nitrogen 3361 availability on lipid production by Nannochloropsis sp, Applied microbiology and biotechnology, vol.90, issue.4, pp.1429-1441, 2011.

A. C. Guedes, L. A. Meireles, H. M. Amaro, and F. X. Malcata, Changes in lipid class and fatty acid 3364 composition of cultures of Pavlova lutheri, in response to light intensity, Journal of the American Oil, vol.3365, issue.7, pp.791-801, 2010.

S. V. Khotimchenko and I. M. Yakovleva, Lipid composition of the red alga Tichocarpus crinitus 3367 exposed to different levels of photon irradiance, Phytochemistry, vol.66, issue.1, pp.73-79, 2005.

A. Wacker, M. Piepho, J. L. Harwood, I. A. Guschina, and M. T. Arts, Light-induced changes in fatty acid 3369 profiles of specific lipid classes in several freshwater phytoplankton species, Frontiers in plant science, vol.3370, p.264, 2016.

M. R. Brown, G. A. Dunstan, S. J. Norwood, and K. A. Miller, Effects pf harvest stage and light on the 3372 biochemical composition of the diatom Thalassiosira pseudonana, Journal of Phycology, vol.32, issue.1, pp.3373-64, 1996.

G. E. Napolitano, The relationship of lipids with light and chlorphyll measurements in freshwater 3375 algae and periphyton 1, Journal of Phycology, vol.30, issue.6, pp.943-950, 1994.

P. Heydarizadeh, W. Boureba, M. Zahedi, B. Huang, B. Moreau et al., Response of 3377 CO2-starved diatom Phaeodactylum tricornutum to light intensity transition, Philosophical 3378 transactions of the Royal Society of London. Series B, vol.372, 1728.

K. S. Wang and T. Chai, Reduction in omega-3 fatty acids by UV-B irradiation in microalgae, Journal, vol.3380, issue.4, pp.415-422, 1994.

S. P. Singh and P. Singh, Effect of temperature and light on the growth of algae species: A review, 3382 Renewable and Sustainable Energy Reviews, vol.50, pp.431-444, 2015.

Q. Béchet, M. Laviale, N. Arsapin, H. Bonnefond, and O. Bernard, Modeling the impact of high 3384 temperatures on microalgal viability and photosynthetic activity, Biotechnology for Biofuels, vol.10, issue.1, p.136, 2017.

A. Anesi, U. Obertegger, G. Hansen, A. Sukenik, G. Flaim et al., Comparative analysis of 3387 membrane lipids in psychrophilic and mesophilic freshwater dinoflagellates, Frontiers in plant science, vol.3388, p.524, 2016.

D. R. Nelson, S. Mengistu, P. Ranum, G. Celio, M. Mashek et al., New lipid-producing, 3390 cold-tolerant yellow-green alga isolated from the Rocky Mountains of Colorado, Biotechnology, vol.3391, issue.4, pp.853-61, 2013.

A. P. Møller, C. Biard, J. D. Blount, D. C. Houston, P. Ninni et al., Carotenoid-dependent 3393 signals: indicators of foraging efficiency, immunocompetence or detoxification ability?, Avian and 3394 Poultry Biology Reviews, vol.11, issue.3, pp.137-159, 2000.

A. Converti, A. A. Casazza, E. Y. Ortiz, P. Perego, and M. D. Borghi, Effect of temperature and nitrogen 3396 concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for 3397 biodiesel production, Chemical Engineering and Processing, vol.48, issue.6, pp.1146-3398, 2009.

B. Légeret, M. Schulz-raffelt, H. M. Nguyen, P. Auroy, F. Beisson et al., Lipidomic and 3400 transcriptomic analyses of Chlamydomonas reinhardtii under heat stress unveil a direct route for the 3401 conversion of membrane lipids into storage lipids, Plant, cell & environment, p.3402, 2016.

Y. Taoka, N. Nagano, Y. Okita, H. Izumida, S. Sugimoto et al., Influences of culture 3403 temperature on the growth, lipid content and fatty acid composition of Aurantiochytrium sp, Marine biotechnology, vol.3404, pp.368-74, 2009.

G. O. James, C. H. Hocart, W. Hillier, G. D. Price, and M. A. Djordjevic, Temperature modulation of fatty 3406 acid profiles for biofuel production in nitrogen deprived Chlamydomonas reinhardtii, Bioresource, vol.3407, issue.0, pp.441-447, 2013.

M. Schroda, D. Hemme, and T. Muhlhaus, The Chlamydomonas heat stress response, Plant Journal, vol.3409, issue.3, pp.466-480, 2015.

J. R. Fuschino, I. A. Guschina, G. Dobson, N. D. Yan, J. L. Harwood et al., Rising water 3411 temperatures alter lipid dynamics and reduce n-3 essential fatty acid concentrations in cenedesmus 3412 obliquus (Chlorophyta), J Phycol, vol.47, issue.4, pp.763-74, 2011.

S. A. Arisz and T. Munnik, The salt stress-induced LPA response in Chlamydomonas is produced via 3414 PLA(2) hydrolysis of DGK-generated phosphatidic acid, Journal of Lipid Research, vol.52, issue.11, p.2020, 2011.

H. Hu and K. Gao, Response of growth and fatty acid compositions of Nannochloropsis sp. to 3417 environmental factors under elevated CO2 concentration, Biotechnol Lett, vol.28, issue.13, pp.987-92, 2006.

V. T. Duong, S. R. Thomas-hall, and P. M. Schenk, Growth and lipid accumulation of microalgae from 3419 fluctuating brackish and sea water locations in South East Queensland-Australia, Frontiers in plant 3420 science, vol.6, p.359, 2015.

T. Shiratake, A. Sato, A. Minoda, M. Tsuzuki, and N. Sato, Air-drying of cells, the novel conditions for 3422 stimulated synthesis of triacylglycerol in a green alga, Chlorella kessleri, vol.8, issue.11, p.79630, 2013.

P. Spolaore, C. Joannis-cassan, E. Duran, and A. Isambert, Commercial applications of microalgae, Journal of Bioscience and Bioengineering, vol.3424, issue.2, pp.87-96, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00133263

R. Raja, S. Hemaiswarya, N. A. Kumar, S. Sridhar, and R. Rengasamy, A perspective on the 3426 biotechnological potential of microalgae, Critical reviews in microbiology, vol.34, issue.2, pp.77-88, 2008.

R. Harun, M. Singh, G. M. Forde, and M. K. Danquah, Bioprocess engineering of microalgae to produce 3428 a variety of consumer products, Renewable and Sustainable Energy Reviews, vol.14, issue.3, pp.1037-1047, 2010.

I. Rawat, R. Kumar, T. Mutanda, and F. Bux, Dual role of microalgae: Phycoremediation of 3430 domestic wastewater and biomass production for sustainable biofuels production, Applied Energy, vol.3431, issue.10, pp.3411-3424, 2011.

S. Bellou, M. N. Baeshen, A. M. Elazzazy, D. Aggeli, F. Sayegh et al., Microalgal lipids 3433 biochemistry and biotechnological perspectives, Biotechnology advances, vol.32, issue.8, pp.1476-93, 2014.

A. K. Bajhaiya, J. Moreira, and J. K. Pittman, Transcriptional engineering of microalgae: Prospects 3435 for high-value chemicals, Trends in biotechnology, vol.35, issue.2, pp.95-99, 2017.

B. Yeh, Commercializing algae -challenges and opportunities, INFORM, vol.222, pp.485-487, 2011.

J. Lane, Hottest trends in algae, INFORM, vol.25, pp.346-352, 2014.

J. M. Arrieta, S. Arnaud-haond, and C. M. Duarte, What lies underneath: Conserving the oceans' 3439 genetic resources, Proceedings of the National Academy of Sciences, vol.107, issue.43, pp.18318-18324, 2010.

M. L. Colombo, P. Rise, F. Giavarini, D. E. , C. Galli et al., Marine macroalgae as sources of 3441 polyunsaturated fatty acids, Plant foods for human nutrition, pp.67-3442, 2006.

I. Mazarrasa, Y. S. Olsen, E. Mayol, N. Marba, and C. M. Duarte, Rapid growth of seaweed 3444 biotechnology provides opportunities for developing nations, Nat Biotechnol, vol.31, issue.7, pp.591-593, 2013.

R. Halim, M. K. Danquah, and P. A. Webley, Extraction of oil from microalgae for biodiesel production: 3446 A review, Biotechnology advances, vol.30, issue.3, pp.709-741, 2012.

E. Ryckebosch, K. Muylaert, and I. Foubert, Optimization of an analytical procedure for extraction of 3448 lipids from microalgae, Journal of the American Oil Chemists' Society, vol.89, issue.2, pp.189-198, 2012.

S. Yao, A. Brandt, H. Egsgaard, and C. Gjermansen, Neutral lipid accumulation at elevated 3450 temperature in conditional mutants of two microalgae species, Plant Physiology and Biochemistry, vol.61, pp.71-79, 2012.

V. Samburova, M. S. Lemos, S. Hiibel, S. Kent-hoekman, J. C. Cushman et al., Analysis of 3453 triacylglycerols and free fatty acids in algae using ultra-performance liquid chromatography mass 3454 spectrometry, Journal of the American Oil Chemists' Society, vol.90, issue.1, pp.53-64, 2013.

J. Liu, J. Mukherjee, J. J. Hawkes, and S. J. Wilkinson, Optimization of lipid production for algal biodiesel 3456 in nitrogen stressed cells of Dunaliella salina using FTIR analysis, Journal of Chemical Technology &, vol.3457, issue.10, pp.1807-1814, 2013.

Y. J. Lee, R. C. Leverence, E. A. Smith, J. S. Valenstein, K. Kandel et al., High-throughput 3459 analysis of algal crude oils using high resolution mass spectrometry, Lipids, vol.48, issue.3, pp.297-305, 2013.

U. Maheswari, A. Montsant, J. Goll, S. Krishnasamy, K. R. Rajyashri et al., The diatom 3461 EST database, Nucleic Acids Research, vol.33, pp.344-347, 2005.

K. E. Apt, P. G. Kroth-pancic, and A. R. Grossman, Stable nuclear transformation of the diatom 3463 Phaeodactylum tricornutum, vol.252, pp.572-581, 1996.

V. De-riso, R. Raniello, F. Maumus, A. Rogato, C. Bowler et al., Gene silencing in the 3465 marine diatom Phaeodactylum tricornutum, Nucleic Acids Research, vol.37, issue.14, p.96, 2009.

L. Wei, Y. Xin, Q. Wang, J. Yang, H. Hu et al., RNAi-based targeted gene knockdown in the model 3467 oleaginous microalgae Nannochloropsis oceanica, The Plant journal, vol.89, issue.6, pp.1236-1250, 2017.

Q. Wang, Y. Lu, Y. Xin, L. Wei, S. Huang et al., Genome editing of model oleaginous microalgae 3469 Nannochloropsis spp. by CRISPR/Cas9, The Plant journal, vol.88, issue.6, pp.1071-1081, 2016.

J. R. Hibbeln, L. R. Nieminen, T. L. Blasbalg, J. A. Riggs, and W. E. Lands, Healthy intakes of n-3 and n-6 3471 fatty acids: estimations considering worldwide diversity, The American journal of clinical nutrition, vol.83, issue.6, pp.1483-1493, 2006.

B. Lands, research, vol.3474, pp.17-29, 2014.

, Recommendations for intake of polyunsaturated fatty acdis in healthy adults, ISSFAL, vol.3476, pp.12-25, 2004.

G. Schmitz and J. Ecker, The opposing effects of n-3 and n-6 fatty acids, Progress in lipid research, vol.3478, issue.2, pp.147-55, 2008.

P. C. Calder, Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and 3480 clinical relevance, Biochim Biophys Acta, vol.1851, issue.4, pp.469-84, 2015.

P. C. Calder, Very long-chain n-3 fatty acids and human health: fact, fiction and the future, The 3482 Proceedings of the Nutrition Society, vol.77, pp.52-72, 2018.

J. L. Harwood and B. Caterson, Lipid, vol.3484, pp.7-10, 2006.

G. Barcelo-coblijn and E. J. Murphy, Alpha-linolenic acid and its conversion to longer chain n-3 fatty 3486 acids: benefits for human health and a role in maintaining tissue n-3 fatty acid levels, Progress in lipid 3487 research, vol.48, pp.355-74, 2009.

S. C. Cunnane, Problems with essential fatty acids: time for a new paradigm?, Progress in lipid 3489 research, vol.42, pp.544-68, 2003.

P. M. Kris-etherton, J. A. Grieger, and T. D. Etherton, Dietary reference intakes for DHA and EPA, p.3491

, Prostaglandins, leukotrienes, and essential fatty acids, vol.81, issue.2-3, pp.99-104, 2009.

J. A. Hutchings and J. D. Reynolds, Marine fish population collapses: consequences for recovery and 3493 extinction risk, BioScience, vol.54, issue.4, pp.297-309, 2004.

D. Tocher, Issues surrounding fish as a source of omega-3 long-chain polyunsaturated fatty acids, p.3495

, Lipid Technology, vol.21, issue.1, pp.13-16, 2009.

T. C. Adarme-vega, S. R. Thomas-hall, and P. M. Schenk, Towards sustainable sources for omega-3 fatty 3497 acids production, Curr Opin Biotechnol, vol.26, pp.14-22, 2014.

W. Yongmanitchai and O. P. Ward, Growth of and omega-3 fatty acid production by Phaeodactylum 3499 tricornutum under different culture conditions, Appl Environ Microbiol, vol.57, issue.2, pp.419-444, 1991.

H. Breivik, Long-Chain omega-3 specialty oils, 2007.

C. N. Kuratko and N. Salem, Docosahexaenoic acid from algal oil, European Journal of Lipid Science 3502 and Technology, vol.115, issue.9, pp.965-976, 2013.

D. R. Tocher, J. G. Bell, J. R. Dick, and V. O. Crampton, Effects of dietary vegetable oil on Atlantic salmon 3504 hepatocyte fatty acid desaturation and liver fatty acid compositions, Lipids, vol.38, issue.7, pp.723-755, 2003.

T. C. Adarme-vega, D. K. Lim, M. Timmins, F. Vernen, Y. Li et al., Microalgal biofactories: a 3506 promising approach towards sustainable omega-3 fatty acid production, Microb Cell Fact, vol.11, p.96, 2012.

J. G. Bell and J. R. Sargent, Arachidonic acid in aquaculture feeds: current status and future 3508 opportunities, Aquaculture, vol.218, issue.1, pp.491-499, 2003.

V. Patil, T. Kallqvist, E. Olsen, G. Vogt, and H. R. Gislerod, Fatty acid composition of 12 microalgae for 3510 possible use in aquaculture feed, Aquaculture International, vol.15, issue.1, pp.1-9, 2007.

E. Ganuza, T. Benítez-santana, E. Atalah, O. Vega-orellana, R. Ganga et al., , p.3512

C. Cohnii and S. Sp, as potential substitutes to fisheries-derived oils from 3513 seabream (Sparus aurata) microdiets, Aquaculture, vol.277, issue.1, pp.109-116, 2008.

A. Sukenik, Ecophysiological considerations in the optimization of eicosapentaenoic acid 3515 production by Nannochloropsis sp, Bioresource Technology, vol.35, issue.3, pp.263-3516, 1991.

T. A. Mori and R. J. Woodman, The independent effects of eicosapentaenoic acid and 3518 docosahexaenoic acid on cardiovascular risk factors in humans, Current opinion in clinical nutrition and 3519 metabolic care, vol.9, pp.95-104, 2006.

M. Y. Wei and T. A. Jacobson, Effects of eicosapentaenoic acid versus docosahexaenoic acid on serum 3521 lipids: a systematic review and meta-analysis, Current atherosclerosis reports, vol.13, issue.6, pp.474-83, 2011.

Z. Wen and F. Chen, 8 -Production of eicosapentaenoic acid using heterotrophically grown 3523 microalgae, Single Cell Oils, p.177

T. Babcock, W. S. Helton, and N. J. Espat, Eicosapentaenoic acid (EPA): an antiinflammatory omega-3 3526 fat with potential clinical applications, Nutrition, vol.16, pp.3527-1116, 2000.

P. C. Calder, Annals of nutrition & metabolism, vol.41, issue.4, pp.203-237, 1997.

C. Schacky and P. C. Weber, Metabolism and effects on platelet function of the purified 3531 eicosapentaenoic and docosahexaenoic acids in humans, The Journal of clinical investigation, vol.76, issue.6, pp.2446-50, 1985.

J. H. Hall and J. L. Harwood, Braine lipids in health and disease, Food lipids: 3534 chemistry, nutrition and biotechnology, pp.747-764, 2017.

C. Bigogno, I. Khozin-goldberg, S. Boussiba, A. Vonshak, and Z. Cohen, Lipid and fatty acid 3536 composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic 3537 acid, Phytochemistry, vol.60, issue.5, pp.497-503, 2002.

U. Iskandarov, I. Khozin-goldberg, and Z. Cohen, Identification and characterization of Delta12, p.3539

, Delta6, and Delta5 Desaturases from the green microalga Parietochloris incisa, Lipids, vol.45, issue.6, p.30, 2010.

U. Iskandarov, I. Khozin-goldberg, R. Ofir, and Z. Cohen, Cloning and characterization of the a dagger 3542 6 polyunsaturated fatty acid elongase from the green microalga Parietochloris incisa, Lipids, vol.44, issue.6, pp.545-554, 2009.

M. P. Davey, I. Horst, G. Duong, E. V. Tomsett, A. C. Litvinenko et al., , p.3545

, Triacylglyceride production and autophagous responses in Chlamydomonas reinhardtii depend on 3546 resource allocation and carbon source, Eukaryotic cell, vol.13, issue.3, pp.392-400, 2014.

D. C. Bassham and J. L. Crespo, Autophagy in plants and algae, Frontiers in plant science, vol.5, p.679, 2014.

I. Khozin-goldberg, P. Shrestha, and Z. Cohen, Mobilization of arachidonyl moieties from 3549 triacylglycerols into chloroplastic lipids following recovery from nitrogen starvation of the microalga 3550 Parietochloris incisa, Biochim Biophys Acta, vol.1738, issue.1-3, pp.63-71, 2005.

W. Barclay, C. Weaver, J. Metz, and J. Hansen, 4 -Development of a docosahexaenoic acid production 3552 technology using Schizochytrium: historical perspective and update, p.3553

, Single Cell Oils, pp.75-96

S. Raghukumar and K. Schaumann, An epifluoresence method for direct enumeration of the fungi-3555 like marine protists, the Thraustochytrids, Limnol Oceanogra, vol.38, pp.182-187, 1993.

H. Jiang, R. Zirkle, J. G. Metz, L. Braun, L. Richter et al., The role of tandem acyl 3557 carrier protein domains in polyunsaturated fatty acid biosynthesis, Journal of the American Chemical, vol.3558, issue.20, pp.6336-6343, 2008.

A. Hauvermale, J. Kuner, B. Rosenzweig, D. Guerra, S. Diltz et al., Fatty acid production in 3560 Schizochytrium sp.: involvement of a polyunsaturated fatty acid synthase and a type I fatty acid 3561 synthase, Lipids, vol.41, issue.8, pp.739-786, 2006.

J. G. Metz, J. Kuner, B. Rosenzweig, J. C. Lippmeier, P. Roessler et al., Biochemical 3563 characterization of polyunsaturated fatty acid synthesis in Schizochytrium: release of the products as 3564 free fatty acids, Plant physiology and biochemistry : PPB, vol.47, issue.6, pp.472-480, 2009.

L. Stefan and B. Sammy, Advances in the production of high-value products by microalgae, Biotechnology, vol.3566, issue.3, pp.169-183, 2014.

R. E. Armenta and M. C. Valentine, Single-cell oils as a source of omega-3 fatty acids: an overview of 3568 recent advances, Journal of the American Oil Chemists' Society, vol.90, issue.2, pp.167-182, 2013.

D. Pal, I. Khozin-goldberg, S. Didi-cohen, A. Solovchenko, A. Batushansky et al., Growth, 3570 lipid production and metabolic adjustments in the euryhaline eustigmatophyte Nannochloropsis 3571 oceanica CCALA 804 in response to osmotic downshift, Applied microbiology and biotechnology, vol.97, issue.18, pp.8291-306, 2013.

T. Rezanka, M. Petrankova, V. Cepak, P. Pribyl, K. Sigler et al., Trachydiscus minutus, a new 3574 biotechnological source of eicosapentaenoic acid, Folia microbiologica, vol.55, issue.3, pp.265-274, 2010.

T. Rezanka, J. Lukavsky, L. Nedbalova, and K. Sigler, Effect of nitrogen and phosphorus starvation on 3576 the polyunsaturated triacylglycerol composition, including positional isomer distribution, in the alga 3577 Trachydiscus minutus, Phytochemistry, vol.72, issue.18, pp.2342-51, 2011.

I. Khozin-goldberg, S. Leu, and S. Boussiba, Microalgae as a source for VLC-PUFA production, sub-3579 cellular biochemistry, vol.86, pp.471-510, 2016.

R. B. Draaisma, R. H. Wijffels, P. M. Slegers, L. B. Brentner, A. Roy et al., Food commodities 3581 from microalgae, Current Opinion in Biotechnology, vol.24, issue.2, pp.169-177, 2013.

M. L. Hamilton, R. P. Haslam, J. A. Napier, and O. Sayanova, Metabolic engineering of Phaeodactylum 3583 tricornutum for the enhanced accumulation of omega-3 long chain polyunsaturated fatty acids, Metab, vol.3584, pp.3-9, 2014.

M. S. Chauton, K. I. Reitan, N. H. Norsker, R. Tveterås, and H. T. , A techno-economic analysis of 3586 industrial production of marine microalgae as a source of EPA and DHA-rich raw material for aquafeed: 3587 Research challenges and possibilities, Aquaculture, vol.436, pp.95-103, 2015.

R. D. Gardner, K. E. Cooksey, F. Mus, R. Macur, K. Moll et al., Use of sodium 3589 bicarbonate to stimulate triacylglycerol accumulation in the chlorophyte Scenedesmus sp. and the 3590 diatom Phaeodactylum tricornutum, Journal of applied phycology, vol.24, issue.5, pp.1311-1320, 2012.

F. Mus, J. P. Toussaint, K. E. Cooksey, M. W. Fields, R. Gerlach et al., Physiological 3592 and molecular analysis of carbon source supplementation and pH stress-induced lipid accumulation in 3593 the marine diatom Phaeodactylum tricornutum, Applied microbiology and biotechnology, vol.97, issue.8, pp.3625-3667, 2013.

A. Hosseini-tafreshi and M. Shariati, Dunaliella biotechnology: methods and applications, vol.107, pp.14-35, 2009.

Z. Wen and F. Chen, Heterotrophic production of eicosapentaenoic acid by microalgae, Biotechnology advances, vol.3598, issue.4, pp.273-294, 2003.

A. Vieler, S. B. Brubaker, B. Vick, and C. Benning, A lipid droplet protein of Nannochloropsis with 3600 functions partially analogous to plant oleosins, Plant Physiology, vol.158, issue.4, pp.1562-1569, 2012.

R. J. Winwood, Recent developments in the commercial production of DHA and EPA rich oils from 3602 micro-algae, OCL, vol.20, issue.6, p.604, 2013.

F. Guiheneuf, M. Fouqueray, V. Mimouni, L. Ulmann, B. Jacquette et al., Effect of UV stress 3604 on the fatty acid and lipid class composition in two marine microalgae Pavlova lutheri 3605 (Pavlovophyceae) and Odontella aurita (Bacillariophyceae), Journal of applied phycology, vol.22, issue.5, pp.3606-629, 2010.

A. Haimeur, L. Ulmann, V. Mimouni, F. Gueno, F. Pineau-vincent et al., The role of 3608 Odontella aurita, a marine diatom rich in EPA, as a dietary supplement in dyslipidemia, platelet 3609 function and oxidative stress in high-fat fed rats, Lipids in health and disease, vol.11, p.147, 2012.

J. Wynn, P. Behrens, A. Sundararajan, J. Hansen, and K. , Apt, 6 -Production of single cell oils by 3611 dinoflagellates, Single Cell Oils, pp.3612-115

L. Sijtsma, A. J. Anderson, and C. Ratledge, 7 -alternative carbon sources for heterotrophic production 3614 of docosahexaenoic acid by the marine alga Crypthecodinium cohnii, p.3615

, Single Cell Oils, pp.131-149

D. J. Pyle, R. A. Garcia, and Z. Wen, Producing docosahexaenoic acid (DHA)-rich algae from biodiesel-3617 derived crude glycerol: effects of impurities on DHA production and algal biomass composition, J Agric 3618 Food Chem, vol.56, issue.11, pp.3933-3942, 2008.

S. Bellou and G. Aggelis, Biochemical activities in Chlorella sp. and Nannochloropsis salina during lipid 3620 and sugar synthesis in a lab-scale open pond simulating reactor, Journal of biotechnology, vol.164, issue.2, pp.3621-318, 2013.

C. Ratledge, 1 -Single cell oils for the 21st century, Single Cell Oils, vol.3623, pp.3-26

J. R. Abril, T. Wills, and F. Harding, 18 -Applications of single cell oils for animal nutrition, Single Cell Oils, pp.389-419

M. Velasco-escudero and H. Gong, 19 -Applications of single cell oils for aquaculture, Single Cell Oils, pp.421-436

R. H. Wijffels and M. J. Barbosa, An outlook on microalgal biofuels, Science, vol.329, issue.5993, pp.796-799, 2010.

T. M. Mata, A. A. Martins, and N. S. Caetano, Microalgae for biodiesel production and other 3630 applications: A review, Renewable & Sustainable Energy Reviews, vol.14, issue.1, pp.217-232, 2010.

C. S. Jones and S. P. Mayfield, Algae biofuels: versatility for the future of bioenergy, Current Opinion, vol.3632, issue.3, pp.346-351, 2012.

B. E. Rittmann, Opportunities for renewable bioenergy using microorganisms, Biotechnol Bioeng, vol.3634, issue.2, pp.203-215, 2008.

D. E. Robertson, S. A. Jacobson, F. Morgan, D. Berry, G. M. Church et al., A new dawn for 3636 industrial photosynthesis, Photosynth Res, vol.107, issue.3, pp.269-77, 2011.

C. Ratledge and Z. Cohen, Microbial and algal oils: Do they have a future for biodiesel or as 3638 commodity oils?, Lipid Technology, vol.20, issue.7, pp.155-160, 2008.

P. M. Schenk, S. R. Thomas-hall, E. Stephens, U. C. Marx, J. H. Mussgnug et al., Second 3640 generation biofuels: high-efficiency microalgae for biodiesel production, BioEnergy Research, vol.1, issue.1, pp.20-43, 2008.

C. Formighieri, F. Franck, and R. Bassi, Regulation of the pigment optical density of an algal cell: filling 3643 the gap between photosynthetic productivity in the laboratory and in mass culture, Journal of 3644 biotechnology, vol.162, issue.1, pp.115-138, 2012.

A. Melis, Solar energy conversion efficiencies in photosynthesis: Minimizing the chlorophyll 3646 antennae to maximize efficiency, Plant Science, vol.177, issue.4, pp.272-280, 2009.

J. Zamora-castro, J. Paniagua-michel, and C. Lezama-cervantes, A novel approach for bioremediation 3648 of a coastal marine wastewater effluent based on artificial microbial mats, Marine biotechnology, vol.10, pp.181-190, 2008.

H. Park and C. G. Lee, Theoretical calculations on the fasibility of microalgal biofuels: utilization of 3651 marine resources could help realizing the potential of microalgae, Biotechnol J, vol.11, issue.11, pp.1461-3652, 2016.

A. Pandley, Microalgae biomass production for carbon dioxide mitigation and biodiesel 3654 production, Journal of microbial experiment, 2017.

M. A. Borowitzka, 13 -Algae oils for biofuels: chemistry, physiology, and production, Single Cell Oils, pp.271-289

Y. Chisti, Biodiesel from microalgae, Biotechnology advances, vol.25, issue.3, pp.294-306, 2007.

Y. M. Gong, H. H. Hu, Y. Gao, X. D. Xu, and H. Gao, Microalgae as platforms for production of 3659 recombinant proteins and valuable compounds: progress and prospects, Journal of Industrial 3660 Microbiology & Biotechnology, vol.38, issue.12, pp.1879-1890, 2011.

B. Sialve, N. Bernet, and O. Bernard, Anaerobic digestion of microalgae as a necessary step to make 3662 microalgal biodiesel sustainable, Biotechnology advances, vol.27, issue.4, pp.409-425, 2009.

Y. Chisti, Fuels from microalgae, Biofuels, vol.1, issue.2, pp.233-235, 2010.

T. Studt, Algae promise biofuel solutions, INFORM, vol.21, pp.319-324, 2010.

P. Metzger and C. Largeau, Botryococcus braunii: a rich source for hydrocarbons and related ether 3666 lipids, Applied microbiology and biotechnology, vol.66, issue.5, pp.486-496, 2005.

M. J. Griffiths and S. T. Harrison, Lipid productivity as a key characteristic for choosing algal species 3668 for biodiesel production, Journal of applied phycology, vol.21, issue.5, pp.493-507, 2009.

T. Mutanda, D. Ramesh, S. Karthikeyan, S. Kumari, A. Anandraj et al., Bioprospecting for hyper-3670 lipid producing microalgal strains for sustainable biofuel production, Bioresource Technology, vol.102, issue.1, pp.57-70, 2011.

T. Sobczuk and Y. Chisti, Potential fuel oils from the microalga Choricystis minor, Journal of 3673 Chemical Technology & Biotechnology, vol.85, issue.1, pp.100-108, 2010.

D. R. Georgianna and S. P. Mayfield, Exploiting diversity and synthetic biology for the production of 3675 algal biofuels, Nature, vol.488, issue.7411, pp.329-335, 2012.

S. A. Scott, M. P. Davey, J. S. Dennis, I. Horst, C. J. Howe et al., Biodiesel from 3677 algae: challenges and prospects, Current Opinion in Biotechnology, vol.21, issue.3, pp.277-286, 2010.

Y. F. Niu, M. H. Zhang, D. W. Li, W. D. Yang, J. S. Liu et al., Improvement of neutral lipid 3679 and polyunsaturated fatty acid biosynthesis by overexpressing a type 2 diacylglycerol acyltransferase 3680 in marine diatom Phaeodactylum tricornutum, Marine drugs, vol.11, issue.11, pp.4558-69, 2013.

M. Baba and Y. Shiraiwa, Biosynthesis of lipids and hydrocarbons in algae

R. Radakovits, R. E. Jinkerson, A. Darzins, and M. C. Posewitz, Genetic engineering of algae for 3683 enhanced biofuel production, Eukaryotic cell, vol.9, issue.4, pp.486-501, 2010.

K. K. Sharma, H. Schuhmann, and P. M. Schenk, High lipid induction in microalgae for biodiesel 3685 production, Energies, vol.5, issue.5, p.1532, 2012.

Y. Zhu and N. T. Dunford, Growth and biomass characteristics of Picochlorum oklahomensis and 3687 Nannochloropsis oculata, Journal of the American Oil Chemists' Society, vol.90, issue.6, pp.841-849, 2013.

N. Wase, P. Black, and C. Dirusso, Innovations in improving lipid production: Algal chemical genetics, Progress in lipid research, vol.3689, pp.101-123, 2018.

G. Knothe, Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters, vol.3691, pp.1059-1070, 2005.

G. Knothe, Analyzing biodiesel: standards and other methods, Journal of the American Oil, vol.3693, issue.10, pp.823-833, 2006.

L. Rodolfi, G. Zittelli, N. Bassi, G. Padovani, N. Biondi et al., Microalgae for oil: Strain 3695 selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor, p.3696

, Biotechnol Bioeng, vol.102, issue.1, pp.100-112, 2009.

C. U. Ugwu, H. Aoyagi, and H. Uchiyama, Photobioreactors for mass cultivation of algae, Bioresour, vol.3698, issue.10, pp.4021-4029, 2008.

S. Bellou and G. Aggelis, Biochemical activities in Chlorella sp. and Nannochloropsis salina during lipid 3700 and sugar synthesis in a lab-scale open pond simulating reactor, Journal of biotechnology, vol.164, issue.2, pp.318-347, 2012.

L. Wang, Y. Li, M. Sommerfeld, and Q. Hu, A flexible culture process for production of the green 3703 microalga Scenedesmus dimorphus rich in protein, carbohydrate or lipid, Bioresource Technology, vol.3704, issue.0, pp.289-295, 2013.

N. A. Idris, S. K. Loh, H. L. Lau, E. M. Mustafa, V. Vello et al., Cultivation of microalgae 3706 in medium containing palm oil mill effluent and its conversion into biofuel, J. Oil Palm Res, vol.29, issue.2, pp.3707-291, 2017.

J. Kim, G. Yoo, H. Lee, J. Lim, K. Kim et al., Methods of downstream processing for the 3709 production of biodiesel from microalgae, Biotechnology advances, vol.31, issue.6, pp.862-876, 2013.

L. Caspeta and J. Nielsen, Economic and environmental impacts of microbial biodiesel, Biotechnology, vol.3711, p.789, 2013.

Y. Chisti, Biodiesel from microalgae beats bioethanol, Trends in biotechnology, vol.26, issue.3, pp.126-3713, 2008.

L. Reijnders, Do biofuels from microalgae beat biofuels from terrestrial plants?, Trends in 3715 biotechnology, vol.26, pp.351-353, 2008.

Y. Chisti, Response to Reijnders: Do biofuels from microalgae beat biofuels from terrestrial 3717 plants?, Trends in biotechnology, vol.26, issue.7, pp.351-352, 2008.

K. M. Weyer, D. R. Bush, A. Darzins, and B. D. Willson, Theoretical maximum algal oil production, p.3719

, BioEnergy Research, vol.3, issue.2, pp.204-213, 2010.

R. Davis, A. Aden, and P. T. Pienkos, Techno-economic analysis of autotrophic microalgae for fuel 3721 production, Applied Energy, vol.88, issue.10, pp.3524-3531, 2011.

C. J. Unkefer, R. T. Sayre, J. K. Magnuson, D. B. Anderson, I. Baxter et al., Review of the 3723 algal biology program within the National Alliance for Advanced Biofuels and Bioproducts, Research, vol.3724, pp.187-215, 2017.

V. Henriquez, C. Escobar, J. Galarza, and J. Gimpel, Carotenoids in microalgae, Sub-cellular 3726 biochemistry, vol.79, pp.219-256, 2016.

R. Sathasivam and N. Juntawong, Modified medium for enhanced growth of Dunaliella strains, Int J 3728 Curr Sci, vol.5, pp.67-73, 2013.

R. Sathasivam, R. Radhakrishnan, A. Hashem, and E. F. Abd_allah, Microalgae metabolites: A rich 3730 source for food and medicine, Saudi Journal of Biological Sciences, 2017.

D. Kumar, D. W. Dhar, S. Pabbi, N. Kumar, and S. Walia, Extraction and purification of C-phycocyanin 3732 from Spirulina platensis (CCC540), Indian Journal of Plant Physiology, vol.19, issue.2, pp.184-188, 2014.

M. A. Borowitzka, 11 -Carotenoid production using microorganisms, Single Cell Oils, pp.225-240

X. Luo, P. Su, and W. Zhang, Advances in microalgae-derived phytosterols for functional food and 3736 pharmaceutical applications, Marine drugs, vol.13, issue.7, pp.4231-4254, 2015.

J. K. Volkman, A review of sterol markers for marine and terrigenous organic matter, Organic, vol.3738, issue.2, pp.83-99, 1986.

J. K. Volkman, S. M. Barrett, S. I. Blackburn, M. P. Mansour, E. L. Sikes et al., Microalgal 3740 biomarkers: A review of recent research developments, Organic Geochemistry, vol.29, pp.1163-3741, 1998.

F. Ahmed, W. Zhou, and P. M. Schenk, Pavlova lutheri is a high-level producer of phytosterols, Algal, vol.3743, pp.210-217, 2015.

S. Bleakley and M. Hayes, Algal Proteins: Extraction, application, and challenges concerning 3745 production, foods, vol.6, 2017.

R. Vaezi, J. A. Napier, and O. Sayanova, Identification and functional characterization of genes 3747 encoding omega-3 polyunsaturated fatty acid biosynthetic activities from unicellular microalgae, Marine drugs, vol.3748, issue.12, pp.5116-5145, 2013.

S. L. Pereira, A. E. Leonard, Y. S. Huang, L. T. Chuang, and P. Mukerji, Identification of two novel 3750 microalgal enzymes involved in the conversion of the omega3-fatty acid, eicosapentaenoic acid, into 3751 docosahexaenoic acid, The Biochemical journal, vol.384, issue.2, pp.357-66, 2004.

X. R. Zhou, S. S. Robert, J. R. Petrie, D. M. Frampton, M. P. Mansour et al., Isolation 3753 and characterization of genes from the marine microalga Pavlova salina encoding three front-end 3754 desaturases involved in docosahexaenoic acid biosynthesis, Phytochemistry, vol.68, issue.6, pp.785-96, 2007.