Skip to Main content Skip to Navigation
Journal articles

Highly N-doped Silicon Nanowires as a Possible Alternative to Carbon for On-chip Electrochemical Capacitors

Abstract : Highly n-doped silicon nanowires (SiNWs) have been grown by a chemical vapor deposition process and have been investigated as possible electrodes for electrochemical capacitors (ECs) micro-devices. Their performances have been compared to existing literature on the field, which shows the use of SiNWs fabricated via different techniques, SiC coated SiNWs and porous silicon layers. The double layer capacitance of n-doped silicon wafer is ≈6 µF cm−2 in standard organic electrolyte, and this value can be increased by nanostructuration of SiNWs up to 440 µF cm−2 by tuning deposition parameters. Similar values are found in the literature. Symmetrical microdevices based on two identical SiNWs electrodes can be operated in organic based electrolytes within a 1.2 V voltage window. The devices show excellent cycling efficiency over more than 2000 cycles, with capacitance value of 51 µF cm−2 and an energy density of 10 nWh cm−2 (37 µJ cm−2). The increase of specific surface area by different techniques may drastically boost these values in the near future.
Complete list of metadata

https://hal.archives-ouvertes.fr/hal-00974867
Contributor : Richard BASCHERA Connect in order to contact the contributor
Submitted on : Monday, April 7, 2014 - 3:29:53 PM
Last modification on : Wednesday, April 27, 2022 - 4:08:25 AM

Links full text

Identifiers

Citation

Fleur Thissandier, Pascal Gentile, Nicolas Pauc, Emmanuel Hadji, Annaig Le Comte, et al.. Highly N-doped Silicon Nanowires as a Possible Alternative to Carbon for On-chip Electrochemical Capacitors. Electrochemistry, 2013, 81 (10), pp.777. ⟨10.5796/electrochemistry.81.777⟩. ⟨hal-00974867⟩

Share

Metrics

Record views

269