Fissile mass quantification in radioactive waste packages using photofission delayed gamma rays - CEA - Commissariat à l’énergie atomique et aux énergies alternatives Accéder directement au contenu
Communication Dans Un Congrès Année : 2016

Fissile mass quantification in radioactive waste packages using photofission delayed gamma rays

Résumé

This paper reports a feasibility study, performed by numerical simulation with MCNPX, of fissile mass characterization in dense, large volume, long-lived and medium activity radioactive waste packages, using photofission delayed gamma rays. High-energy photon interrogation with a 15 MeV LINAC has been modelled for a 1.18 m3 cemented waste package, coupled to high resolution spectroscopy with a HP Ge detector. The study was carried out by assessing the passive and active backgrounds respectively due to the waste package gamma emission, and to material activation during irradiation, in view to determine the detection limits for the main delayed gamma rays of interest. The obtained detection limits are lower than the expected uranium mass in the waste package. On the other hand, as the photofission signal results from both fissile 235U and fertile 238U isotopes, a method for uranium isotopes discrimination based on gamma-ray ratios has been evaluated, showing that photofission delayed gamma rays could be used to assess the fissile mass as well as the total uranium mass.
Fichier non déposé

Dates et versions

cea-01992376 , version 1 (24-01-2019)

Identifiants

Citer

E. Simon, F. Jallu, B. Pérot, S. Plumeri. Fissile mass quantification in radioactive waste packages using photofission delayed gamma rays. 2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD), Oct 2016, Strasbourg, France. pp.1-4, ⟨10.1109/NSSMIC.2016.8069819⟩. ⟨cea-01992376⟩

Collections

CEA DEN CEA-CAD
27 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More