Optical tweezing using tunable optical lattices along a few-mode silicon waveguide - Archive ouverte HAL Access content directly
Journal Articles Lab on a Chip Year : 2018

Optical tweezing using tunable optical lattices along a few-mode silicon waveguide

(1, 2) , (3, 1, 4, 5) , (3) , (3) , (3) , (2) , (2)
1
2
3
4
5

Abstract

Fourteen years ago, optical lattices and holographic tweezers were considered as a revolution, allowing for trapping and manipulating multiple particles at the same time using laser light. Since then, near-field optical forces have aroused tremendous interest as they enable efficient trapping of a wide range of objects, from living cells to atoms, in integrated devices. Yet, handling at will multiple objects using a guided light beam remains a challenging task for current on-chip optical trapping techniques. We demonstrate here on-chip optical trapping of dielectric microbeads and bacteria using one-dimensional optical lattices created by near-field mode beating along a few-mode silicon nanophotonic waveguide. This approach allows not only for trapping a large number of particles in periodic trap arrays with various geometries, but also for manipulating them via diverse transport and repositioning techniques. Near-field mode-beating optical lattices may be readily implemented in lab-on-a-chip devices, addressing numerous scientific fields ranging from bio-analysis to nanoparticle processing.
Fichier principal
Vignette du fichier
C.Pin_et_al._LabChip_Manuscript.pdf (1.02 Mo) Télécharger le fichier
Origin : Publisher files allowed on an open archive
Loading...

Dates and versions

cea-01988796 , version 1 (22-01-2019)

Identifiers

Cite

Christophe Pin, J.-B. Jager, M. Tardif, E. Picard, E. Hadji, et al.. Optical tweezing using tunable optical lattices along a few-mode silicon waveguide. Lab on a Chip, 2018, 18 (12), pp.1750-1757. ⟨10.1039/c8lc00298c⟩. ⟨cea-01988796⟩
71 View
193 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More