L. M. Alkhalaf and K. S. Ryan, Biosynthetic Manipulation of tryptophan in bacteria: pathways and mechanisms, Chem. Biol, vol.22, pp.317-345, 2015.

N. Alqahtani, S. K. Porwal, E. D. James, D. M. Bis, J. A. Karty et al., Synergism between genome sequencing, tandem mass spectrometry and bio-inspired synthesis reveals insights into nocardioazine B biogenesis, Org. Biomol. Chem, vol.13, pp.7177-7192, 2015.

V. Alva, S. Z. Nam, J. Söding, and A. N. Lupas, The MPI bioinformatics toolkit as an integrative platform for advanced protein sequence and structure analysis, Nucleic Acids Res, vol.44, pp.410-415, 2016.

P. Belin, M. H. Le-du, A. Fielding, O. Lequin, M. Jacquet et al., Identification and structural basis of the reaction catalyzed by CYP121, an essential cytochrome P450 in Mycobacterium tuberculosis, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.7426-7431, 2009.
URL : https://hal.archives-ouvertes.fr/cea-01997903

P. Belin, M. Moutiez, S. Lautru, J. Seguin, J. L. Pernodet et al., The nonribosomal synthesis of diketopiperazines in tRNAdependent cyclodipeptide synthase pathways, Nat. Prod. Rep, vol.29, pp.961-979, 2012.

L. Bonnefond, T. Arai, Y. Sakaguchi, T. Suzuki, R. Ishitani et al., Structural basis for nonribosomal peptide synthesis by an aminoacyltrna synthetase paralog, Proc. Natl. Acad. Sci. U.S.A, vol.108, pp.3912-3917, 2011.

A. D. Borthwick, 5-diketopiperazines: synthesis, reactions, medicinal chemistry, and bioactive natural products, Chem. Rev, vol.2, pp.3641-3716, 2012.

K. Brockmeyer and S. M. Li, Mutations of residues in pocket P1 of a cyclodipeptide synthase strongly increase product formation, J. Nat. Prod, vol.80, pp.2917-2922, 2017.

G. L. Challis, J. Ravel, and C. A. Townsend, Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains, Chem. Biol, vol.7, pp.211-224, 2000.

Y. H. Chen, S. E. Liou, C. , and C. C. , Two-step mass spectrometric approach for the identification of diketopiperazines in chicken essence, Eur. Food Res. Technol, vol.218, pp.589-597, 2004.

G. E. Crooks, G. Hon, J. M. Chandonia, and S. E. Brenner, WebLogo: a sequence logo generator, Genome Res, vol.14, pp.1188-1190, 2004.

M. J. Cryle, S. G. Bell, and I. Schlichting, Structural and biochemical characterization of the cytochrome P450 CypX (CYP134A1) from bacillus subtilis: a cyclo-L-leucyl-L-leucyl dipeptide oxidase, Biochemistry, vol.49, pp.7282-7296, 2010.

T. W. Giessen and M. A. Marahiel, The tRNA-dependent biosynthesis of modified cyclic dipeptides, Int. J. Mol. Sci, vol.15, pp.14610-14631, 2014.

T. W. Giessen and M. A. Marahiel, Rational and combinatorial tailoring of bioactive cyclic dipeptides, Front. Microbiol, vol.6, p.785, 2015.

T. W. Giessen, A. M. Von-tesmar, and M. A. Marahiel, A tRNAdependent two-enzyme pathway for the generation of singly and doubly methylated ditryptophan 2,5-diketopiperazines, Biochemistry, vol.52, pp.4274-4283, 2013.

T. W. Giessen, A. M. Von-tesmar, and M. A. Marahiel, Insights into the generation of structural diversity in a tRNA-dependent pathway for highly modified bioactive cyclic dipeptides, Chem. Biol, vol.20, pp.828-838, 2013.

M. Gondry, L. Sauguet, P. Belin, R. Thai, R. Amouroux et al., Cyclodipeptide synthases are a family of tRNA-dependent peptide bondforming enzymes, Nat. Chem. Biol, vol.5, pp.414-420, 2009.
URL : https://hal.archives-ouvertes.fr/cea-02000100

M. Gouy, S. Guindon, and O. Gascuel, Sea view version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building, Mol. Biol. Evol, vol.27, pp.221-224, 2010.

B. Gu, S. He, X. Yan, and L. Zhang, Tentative biosynthetic pathways of some microbial diketopiperazines, Appl. Microbiol. Biotechnol, vol.97, pp.8439-8453, 2013.

Y. C. Guo, S. X. Cao, X. K. Zong, X. C. Liao, and Y. F. Zhao, ESI-MSn study on the fragmentation of protonated cyclic-dipeptides, Spectroscopy, vol.23, pp.131-139, 2009.

I. B. Jacques, M. Moutiez, J. Witwinowski, E. Darbon, C. Martel et al., Analysis of 51 cyclodipeptide synthases reveals the basis for substrate specificity, Nat. Chem. Biol, vol.11, pp.721-727, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01430815

E. D. James, B. Knuckley, N. Alqahtani, S. Porwal, J. Ban et al., Two distinct cyclodipeptide synthases from a marine actinomycete catalyze biosynthesis of the same diketopiperazine natural product, ACS Synth. Biol, vol.5, pp.547-553, 2016.

R. R. King, C. , and L. A. , The thaxtomin phytotoxins: sources, synthesis, biosynthesis, biotransformation and biological activity, Phytochemistry, vol.70, pp.833-841, 2009.

R. R. King and C. H. Lawrence, Characterization of new thaxtomin a analogues generated in vitro by streptomyces scabies, J. Agric. Food Chem, vol.44, pp.1108-1110, 1996.

S. Lautru, M. Gondry, R. Genet, and J. L. Pernodet, The albonoursin gene cluster of S. noursei: biosynthesis of diketopiperazine metabolites independent of nonribosomal peptide synthetases, Chem. Biol, vol.9, pp.1355-1364, 2002.

V. Lefort, J. E. Longueville, and O. Gascuel, SMS: smart model selection in PhyML, Mol. Biol. Evol, vol.34, pp.2422-2424, 2017.
URL : https://hal.archives-ouvertes.fr/lirmm-01794206

I. Letunic and P. Bork, Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees, Nucleic Acids Res, vol.44, pp.242-245, 2016.

S. M. Li, Prenylated indole derivatives from fungi: structure diversity, biological activities, biosynthesis and chemoenzymatic synthesis, Nat. Prod. Rep, vol.27, pp.57-78, 2010.

Y. Li, Y. M. Lai, Y. Lu, Y. L. Yang, C. et al., Analysis of the biosynthesis of antibacterial cyclic dipeptides in nocardiopsis alba, Arch. Microbiol, vol.196, pp.765-774, 2014.

S. Maiya, A. Grundmann, S. M. Li, and G. Turner, The fumitremorgin gene cluster of Aspergillus fumigatus: identification of a gene encoding brevianamide F synthetase, Chembiochem, vol.7, pp.1062-1069, 2006.

S. Meng, W. Han, J. Zhao, X. Jian, H. Pan et al., A six-oxidase cascade for tandem C-H bond activation revealed by reconstitution of bicyclomycin biosynthesis, Angew. Chem. Int. Ed, vol.57, pp.719-723, 2017.

M. Moutiez, P. Belin, and M. Gondry, Aminoacyl-tRNA-utilizing enzymes in natural product biosynthesis, Chem. Rev, vol.117, pp.5578-5618, 2017.

M. Moutiez, E. Schmitt, J. Seguin, R. Thai, E. Favry et al., Unravelling the mechanism of non-ribosomal peptide synthesis by cyclodipeptide synthases, Nat. Commun, vol.5, p.5141, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01098814

M. Moutiez, J. Seguin, M. Fonvielle, P. Belin, I. B. Jacques et al., Specificity determinants for the two tRNA substrates of the cyclodipeptide synthase AlbC from Streptomyces noursei, Nucleic Acids Res, vol.42, pp.7247-7258, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01332732

I. A. Papayannopoulos, The interpretation of collision-induced dissociation tandem mass spectra of peptides, Mass Spectrom. Rev, vol.14, pp.49-73, 1995.

J. B. Patteson, W. Cai, R. A. Johnson, K. C. Santa-maria, L. et al., Identification of the biosynthetic pathway for the antibiotic bicyclomycin, Biochemistry, vol.57, pp.61-65, 2017.

C. Rausch, T. Weber, O. Kohlbacher, W. Wohlleben, and D. H. Huson, Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs), Nucleic Acids Res, vol.33, pp.5799-5808, 2005.

L. Sauguet, M. Moutiez, Y. Li, P. Belin, J. Seguin et al., Cyclodipeptide synthases, a family of class-I aminoacyl-tRNA synthetase-like enzymes involved in non-ribosomal peptide synthesis, Nucleic Acids Res, vol.39, pp.4475-4489, 2011.
URL : https://hal.archives-ouvertes.fr/cea-02000061

T. D. Schneider and R. M. Stephens, sequence logos: a new way to display consensus sequences, Nucleic Acids Res, vol.18, pp.6097-6100, 1990.

A. W. Schultz, D. C. Oh, J. R. Carney, R. T. Williamson, D. W. Udwary et al., Biosynthesis and structures of cyclomarins and cyclomarazines, prenylated cyclic peptides of marine actinobacterial origin, J. Am. Chem. Soc, vol.130, pp.4507-4516, 2008.

J. Seguin, M. Moutiez, Y. Li, P. Belin, A. Lecoq et al., Nonribosomal peptide synthesis in animals: the cyclodipeptide synthase of nematostella, Chemistry and Biology, vol.18, pp.1362-1368, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00646132

M. A. Skinnider, C. W. Johnston, N. J. Merwin, C. A. Dejong, and N. A. Magarvey, Global analysis of prokaryotic tRNA-derived cyclodipeptide biosynthesis, BMC Genomics, vol.19, p.45, 2018.

T. Stachelhaus, H. D. Mootz, and M. A. Marahiel, The specificityconferring code of adenylation domains in nonribosomal peptide synthetases, Chem. Biol, vol.6, pp.493-505, 1999.

T. Stark and T. Hofmann, Structures, sensory activity, and dose/response functions of 2,5-diketopiperazines in roasted cocoa nibs, 2005.

, J. Agric. Food Chem, vol.53, pp.7222-7231

F. W. Studier, Protein production by auto-induction in high-density shaking cultures, Protein Expr. Purif, vol.41, pp.207-234, 2005.

C. Vergne, N. Boury-esnault, T. Perez, M. T. Martin, M. T. Adeline et al., Verpacamides, A.-D., a sequence of C11N5 diketopiperazines relating cyclo(Pro-Pro) to cyclo(Pro-Arg), from the marine sponge axinella vaceleti: possible biogenetic precursors of pyrrole-2-aminoimidazole alkaloids, Org. Lett, vol.8, pp.2421-2424, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00078488

M. W. Vetting, S. S. Hegde, and J. S. Blanchard, The structure and mechanism of the Mycobacterium tuberculosis cyclodityrosine synthetase, Nat. Chem. Biol, vol.6, pp.797-799, 2010.

J. Xing, Z. Yang, B. Lv, and L. Xiang, Rapid screening for cyclodopa and diketopiperazine alkaloids in crude extracts of Portulaca Oleracea L. using liquid chromatography/tandem mass spectrometry, Rapid Commun. Mass Spectrom, vol.22, pp.1415-1422, 2008.