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ABSTRACT: The first approach to pyrazole containing helicenes 

via sydnone-aryne [3+2]-cycloaddition is described. An unprece-

dented regioselectivity in the cycloaddition step towards the more 

sterically constrained product was observed in presence of ex-

tended aromatic scaffolds. DFT calculations enabled to understand 

the origin of this unexpected selectivity. 

Ortho-fused aromatic rings belong to a class of helical-shaped mol-

ecules named helicenes.1 Since their discovery, these variegated ar-

omatics have fascinated chemist practitioners due to their elegant 

architecture, inherent chirality and structural complexity. Helical 

structures are particularly interesting as they are found in many bio-

macromolecules inspiring chemists involved in the field of asym-

metric catalysis,2 and their enhanced chiroptical properties have at-

tracted much attention in material science.3 The presence of a het-

eroatom in the fused polycyclic system considerably alters the elec-

tronic structure and helps tuning various optoelectrical properties.4 

In particular, nitrogen-containing helicenes, including pyridine,5 

pyrrole,6 pyrazine7 and imidazolonium4a,8 have attracted much at-

tention. Despite the broad interest over this family of compounds, 

synthetic access still remains challenging and often requires cum-

bersome multistep approaches.1 Ideally, the desired helical motif 

would be assembled in the last step of the sequence, thus enabling 

divergent opportunities for structure diversity. Sydnones are azo-

methine imines, well-known for their 1,3-dipolar-cycloadditions 

with linear and strained alkynes, generating pyrazoles, a pharma-

ceutically and agrochemically relevant heterocyclic scaffold.9 We 

reasoned that properly designed prohelical sydnones 3, bearing or-

tho-extended aromatic substitutions, would be suitable partners 

with arynes bearing an extended aromatic core.10 After cycloaddi-

tion, the subsequent loss of carbon dioxide would deliver the de-

sired pyrazole-containing helicenes, a family of heterohelicenes so 

far unreported (Figure 1). 

We now describe a novel disconnection allowing a direct access to 

a range of unreported helical pyrazoles, based on a key sydnone-

aryne cycloaddition. In the process, we discovered a unique exam-

ple of selective cycloaddition involving these mesoionic betaines 

in favor of the sterically hindered helical product and determined 

the reasons behind such selectivity with analysis of DFT calcula-

tions.  

 

Figure 1: Design of pyrazoles-based helicenes. 

The implementation of this strategy relies on the prerequisite prep-

aration of ortho-fused aromatic azomethine imine dipoles. N-me-

thyl sydnone 1 was identified as key component to build up such 

ortho-aromatic structures. Readily available in two steps from com-

mercial sarcosine, 1 provides a versatile handle for further derivat-

ization. It was envisioned that metal catalyzed functionalization at 

the C4 position of the sydnone with 2-halobenzaldehyde would pro-

vide a key intermediate that might undergo intramolecular 

Knoevenagel condensation under basic conditions to give the de-

sired product 3. Initial attempts showcased that the whole cascade 

could be performed in one single operation. Product 3a was first 

isolated in moderate yield together with the intermediate 

uncyclized aldehyde S3a.11 After some experimentation, it was 

found that in presence of catalytic amounts of Pd(OAc)2 and tri-

phenylphosphine, with an excess of K2CO3 (4 equiv.), the desired 

mesoionic compound 3a could be obtained in 88% yield. Similarly, 

the tetracyclic ortho-sydnone 3b could be isolated in 66% yield 

starting from the corresponding 1-bromo-2-naphthaldehyde (Fig-

ure 2A). 

With a reliable access to the prerequisite ortho-fused aromatic az-

omethine imines 3a and 3b secured, we turned our attention to the 

key 1,3-dipolar-cycloaddition between polycyclic sydnones and ar-

yne precursors. The sydnone-aryne cycloaddition is a 50 year old 

transformation pioneered by Gotthardt, Huisgen, and Knorr and 

later by Kato and Tsuge in 1974,12 but only recently the synthetic 

potential of this transformation has been studied in detail.13 At first, 

we reacted sydnones 3a and 3b in presence of silyl triflate 4a (1.5 

equiv.) and TBAF (1.5 equiv.) at room temperature. As expected, 

the desired products 5 and 6 were isolated in good yields, 77 and 

70%, respectively (Figure 2C). It is worth mentioning that 5 and 6  



 

 

 

Figure 2: A: One-pot synthesis of polycyclic sydnones 3a and 3b; B: aryne precursor; C: Synthesis of helical pyrazoles 5 and 6. D: Synthesis 

of helical pyrazoles 7a, 8a, 9a and 10a. * isomer ratio was measured by 1H-NMR of the crude mixture.

have been synthesized in only two steps from readily available N-

methyl sydnone.14 The sequence could be extended to the ortho-

fused 1,2-naphthyne precursor 4b (Figure 2D). In presence of tri-

cyclic sydnone 3a the formation of the two possible cycloadducts, 

the desired hetero-[5]-helicene 7a and the S-shaped product 7b, 

was observed. As expected, no degree of selectivity was achieved 

and the cycloadducts were isolated in a 1:1 ratio and an overall 74% 

yield. The tetracylic sydnone 3b gave a low degree of selectivity in 

favor of the sterically hindered hetero-[6]-helicene 8a (8a/8b, ratio 

63/37). The 1H NMR analysis of the two regioisomers showed 

well-resolved signals, which could be clearly assigned with COSY 

and NOESY measurements.11 Intrigued by this unexpected result, 

we investigated the reactivity of ortho-sydnones 3a and 3b in pres-

ence of 3,4-phenanthryne precursor 4c (Figure 2D). This ortho-an-

nulated aryne is particularly interesting because it should allow the 

formation of [6]- and [7]-helicenes. The reaction of 3a with 4c in 

presence of TBAF in THF delivered a crude mixture with a useful 

selectivity in favor of the helical product (crude 1H-NMR ratio 

90:10). After purification, the two components of the reaction could 

be isolated in 79% and 6% yield. The 2D-NMR measurements de-

termined the identity of the major compound as the desired [6]-hel-

ical pyrazole 9a.15 When 4c was reacted in presence of 3b, [7]-heli-

cene 10a was isolated in 62% yield with high selectivity (10a:10b 

96:4). Crystals of both isomers 10a and 10b were grown by slowly 

evaporating dichloromethane solutions and the 

structures were determined by single-crystal X-ray diffraction (Fig-

ure 3A).  

The chiroptical properties of [7]-helicene 10a were subjected to a 

preliminary evaluation. Enantiomers of 10a were resolved from a 

racemic mixture using HPLC with a chiral-phase column.16 In Fig-

ure 3B are shown the circular dichrograms of the enantiopure sam-

ples, which exhibit both positive and negative Cotton effects at 235 

and 357 nm. The spectra of the enantiomers are mirror images of 

each other. The measurements conducted in degassed dichloro-

methane for the set of enantiomers led to the observation of a mir-

ror-image CPL signal (Figure 3C). The glum values are -0.001 and 

+0.001 at about the maximum emission wavelength for 10a.17 

These values are of the same order of magnitude as those for other 

examples of organic CPL-active helicenes.18 These results confirm 

that the solution of [7]-helicene 10a in degassed dichloromethane 

exhibits active CPL signals, and also that the emitted light is polar-

ized in opposite directions for the two enantiomeric forms for this 

helicene-like structure. 

The selectivities observed for these sydnone-aryne cycloadditions 

were unexpected, given precedents in the literature. First, sydnones 

are known to be poorly regioselective in their cycloadditions with 

asymmetrical alkyne dipolarophiles.13, 19-23 Moreover, the Houk-

Garg distortion-based model to explain the preferred regioselectiv-

ity of attack of nucleophiles on strained alkynes,24 which is based 

on the difference in internal angles of the alkyne carbons, predicts 



 

low selectivity with 1,2-naphthyne or 3,4-phenanthryne, albeit in 

the observed direction. DFT optimizations of the two structures 

(M06-2X/6-31+G(d,p))11 reveal that the two aryne carbons have 

similar internal bond angles (Figure 4A).  

 

Figure 3: A) Molecular structure of 10a: I) top and II) side views. 

Molecular structure of 10b: III) top and IV) side views. Ellipsoids 

are set at 40% probability; hydrogen atoms are omitted for clarity. 

B) UV (gray curve) and CD spectra of (+)-10a (black curve) and (-

)-10a (red curve); C) CPL (upper curve) and total luminescence 

(lower curves) spectra of (+)-10a (black curve) and (-)-10a (red 

curve) in degassed dichloromethane at 295 K, upon excitation at 

430 nm. 

In order to highlight whether the peculiar structure of sydnones 3a 

and 3b is responsible for the unusual selectivity, sydnone 3c was 

synthesized. As shown in Figure 4B, when N-phenyl sydnone 3c 

was reacted with 4c the opposite selectivity was observed (ratio 

33:66 in favor of 11b).25 This result suggests that the origin of the 

selectivity might be related to the structure of the polycyclic syd-

none itself. To understand the origins of such a dichotomy, we cal-

culated the free energy profiles for the reactions of 3a-3c with both 

1,2-naphthyne and 3,4-phenanthryne, using the same DFT method 

described above. Profiles for the reaction of 3a with 3,4-phenan-

thryne are shown in Figure 4C.11 In all cases examined, the regio-

determining cycloaddition step is also rate-determining and fully 

irreversible, as the formation of the intermediate cycloadduct (int) 

is highly exergonic (ΔG = –33 to –58 kcal/mol). The CO2 extrusion 

step (TS 2) is then extremely facile and once again very exergonic. 

All cycloaddition transition states (TS 1) have very low activation 

barriers (ΔG‡ between 9 and 12 kcal/mol). Our calculations also 

quantitatively reproduce the experimental selectivities, that is for-

mation of the helical regioisomer is predicted to be favored for syd-

nones 3a and 3b, but unfavored for 3c. 

 

Figure 4: A) DFT-optimized structures of polycyclic arynes de-

rived from 4b and 4c. B) Reaction between non planar N-phenyl 

sydnone 3c and 3,4-phenanthryne precursor 4c. * isomer ratio was 

measured by 1H-NMR of the crude mixture. C) Energy profile for 

the reaction of 3a with 3,4-phenanthryne to form 9a or 9b. Free 

energies (enthalpies) are in kcal/mol and were obtained at the M06-

2X/6-311+G(2d,2p)/SMD (THF) // M06-2X/6-31+G(d,p) level of 

theory. D) Cycloaddition TSs leading to regioisomers 9a and 9b. 

M06-2X/6-311+G(2d,2p)/SMD (THF) // M06-2X/6-31+G(d,p). 

Free energies in kcal/mol. 

The TSs leading to the two regioisomers for the representative re-

action of 3a with 3,4-phenanthryne are shown in Figure 4D. The 

TSs for the other pairs of reactants can be found in the SI and dis-

play similar arrangements. First, the TS leading to the major helical 

isomer is more asynchronous, with the shorter forming bond being 

between the more nucleophilic terminus of the azomethine imine 

of the sydnone and the more electrophilic (linear) carbon of the ar-

yne.26 Indeed, for the fused sydnones 3a and 3b, the nitrogen atom 

bears more HOMO character than the carbon, while for N-phenyl 

sydnone 3c, the opposite is found. Second, the forming bonds are 

fairly long, indicative of very early TSs, which are in accord with 
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Figure 5: Synthesis of helical pyrazoles 12a-22a. * isomer ratio was measured by 1H-NMR of the crude mixture. n.i. not isolate. a See 

supporting information for detailed conditions. 

 

the high exergonicity of the cycloaddition steps and the Hammond 

postulate. Third, the major TS seems to benefit from stabilizing C–

H···π interactions (also called face-to-edge π-π interactions) be-

tween the polycyclic backbones of the reactants, while the minor 

TS does not.27 

Distortion/interaction analysis28 confirms this behavior: as the TSs 

are so early, the reactants are barely distorted from their ground-

state geometries, and total distortion energies are, at most, 4.0 

kcal/mol. As such, even though the helical regioisomer of the cy-

cloadducts and pyrazoles is more sterically-encumbered and al-

ways higher in energy than the S-shape isomer, this effect is not 

important in TS 1 since the reactants are still far from each other. 

Conversely, interaction energies range from –7.4 to –12.4 kcal/mol, 

and are greater for the helical vs the S-shape regioisomer. In fact, 

for the six systems studied, the activation energies correlate with 

interaction energies, but have no correlation with distortion ener-

gies.11 To confirm the stabilization offered by the dispersive aro-

matic-aromatic interactions, we computed the binding energies of 

aromatic dimers in the same geometries as the helical TSs.11 For 

the four combinations evaluated, the binding energies were be-

tween –0.4 to –1.9 kcal/mol, demonstrating the stabilization offered 

by the C–H···π interactions for the helical TSs, in addition to the 

more favorable primary orbital interactions. Thus, the TSs that ben-

efit from the most interactions are also earlier, further lowering the 

cost to distort the reactants. These results indicate that with other 

very reactive partners, regioselective cycloadditions might be pos-

sible when interactions with polycyclic backbones are present. In-

deed, when substituted sydnones 3d-3l were reacted with 4c similar 

values of regioselectivity (> 85/15) were observed in favor of the 

and the corresponding [6] and [7]-helicenes 12a-20a were isolated 

in 49 to 76% yields (Figure 5). While the presence of electro-neu-

tral and -withdrawing substituents on the sydnone does not affect 

the transformation, di-substituted electron-rich dipole 3h was 

poorly reactive and the desired [6]-helicene 16a was isolated in 

18% yield.29 Derivative 20a with a the presence of a chloride sub-

stituent offered a useful handle for further functionalization. Under 

catalytic conditions, the products of Sukuzi cross-coupling reaction 

21a and 22a were isolated in 96 and 56% yield. This preliminary 

proof-of-concept showed the possibility to further functionalize 

this helical scaffold by means of metal catalysis and could be of 

interest for potential applications. 

In summary, we have developed a method to access [4],[5],[6] and 

[7]-helicenes containing pyrazoles through sydnone 1,3-dipolar cy-

cloadditions. This process involves the design and synthesis of or-

tho-substituted polyaromatic sydnones, which are more nucleo-

philic than conventional ones, and highlights the first example of 

regioselective cycloaddition of such mesoionic dipoles with aryne 

derivatives. Calculations showed that primary orbital interactions 

and C–H···π dispersive interactions control the regioselectivity of 

this transformation. This reaction will ultimately provide a modular 

access to substituted derivatives, and could be amenable to the syn-

thesis of other helicenes families.  
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